【题目】如图,正方形ABCD中,点E为对角线AC上一点,且AECB,连接DE并延长交BC于点G,过点A作AH⊥BE于点H,交BC于点F.以下结论:①BHHE;②∠BEG45°;③△ABF ≌△DCG; ④4BH2BG·CD.其中正确结论的个数是( )
A.1个B.2
C.3D.4
【答案】D
【解析】
利用正方形的性质得到AB=BC=AE,由此得到判断①正确;先求出∠BAC=∠DAC=45°,利用等腰三角形的性质求出∠AEB=∠AED=,再根据对顶角相等及平角求出∠BEG,由此判断②;根据等腰三角形的三线合一的性质求出∠BAF=,推出∠DGC=∠AFB,即可判断③;证明△BEG∽△DCE,即可判断④.
∵四边形ABCD是正方形,
∴AB=BC,
∵AE=CB,
∴AE=AB,
∵AH⊥BE,
∴BH=HE,即①正确;
∵AC是正方形ABCD的对角线,
∴∠BAC=∠DAC=45°,
∵AE=AB=AD,
∴∠AEB=∠AED=,
∴∠CEG=∠AED=67.5°,
∴∠BEG=180°-∠AEB-∠CEG=45°,故②正确;
∵AB=AE,AH⊥BE,
∴∠BAF=
∵
∴
∵AD∥BC,
∴∠DGC=∠ADE
∴∠AFB=∠DGC,
又∵AB=DC,∠DCG=
∴△ABF ≌△DCG,故③正确;
∵BC=DC,∠BCE=∠DCE=45°,CE=CE,
∴△BCE≌△DCE,
∴BE=DE,∠CBE=∠CDE,
∵∠BEG=∠DCE=45°,
∴△BEG∽△DCE,
∴
∴,
∵DE=BE=2BH,
∴4BH2BG·CD,故④正确,
故正确的有①②③④,
故选:D.
科目:初中数学 来源: 题型:
【题目】面对疫情,每个人都需要积极行动起来,做好预防工作.为此某校开展了“新型冠状病毒肺炎”防控知识竞赛.现从该校五、六年级中各随机抽取10名学生的竞赛成绩(百分制)进行整理、描述和分析(成绩得分用表示,共分成四组:A.,B.,C.,D.),下面给出了部分信息:
五年级10名学生的竞赛成绩是:99,80,99,86,99,96,90,100,89,82
六年级10名学生的竞赛成绩在C组中的数据是:94,90,94
五、六年级抽取的学生竞赛成绩统计表
年级 | 平均数 | 中位数 | 众数 | 方差 |
五年级 | 92 | 93 | 52 | |
六年级 | 92 | 100 | 50.4 |
是据以上信息,解答下列问题:
(1)直接写出上述图表中,,的值:__________,___________,___________;
(2)由以上数据,你认为该校五、六年级中哪个年级学生掌握防溺水安全知识较好?请说明理由(一条理由即可);
(3)该校五、六年级共1800人参加了此次竞赛活动,估计参加此次竞赛活动成绩优秀的学生人数是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】受“新冠”疫情的影响,某销售商在网上销售、两种型号的“手写板”,获利颇丰.已知型,型手写板进价、售价和每日销量如表格所示:
进价(元/个) | 售价(元/个) | 销量(个/日) | |
型 | |||
型 |
根据市场行情,该销售商对型手写板降价销售,同时对型手写板提高售价,此时发现型手写板每降低元就可多卖个,型手写板每提高元就少卖个,要保持每天销售总量不变,设其中型手写板每天多销售个,每天总获利的利润为元
(1)求与之间的函数关系式并写出的取值范围;
(2)要使每天的利润不低于元,直接写出的取值范围;
(3)该销售商决定每销售一个型手写板,就捐元给因“新冠疫情”影响的困难家庭,当时,每天的最大利润为元,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,正方形ABCD的对角线AC,BD交于点O,将△COD绕点O逆时针旋转得到△EOF(旋转角为锐角),连AE,BF,DF,则AE=BF.
(1)如图2,若(1)中的正方形为矩形,其他条件不变.
①探究AE与BF的数量关系,并证明你的结论;
②若BD=7,AE=,求DF的长;
(2)如图3,若(1)中的正方形为平行四边形,其他条件不变,且BD=10,AC=6,AE=5,请直接写出DF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为提升学生的艺术素养,学校计划开设四门艺术选修课:A.书法;B.绘画;C.乐器;D.舞蹈.为了解学生对四门功课的喜欢情况,在全校范围内随机抽取若干名学生进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门).将数据进行整理,并绘制成如下两幅不完整的统计图,请结合图中所给信息解答下列问题:
(1)本次调查的学生共有多少人?扇形统计图中∠α的度数是多少?
(2)请把条形统计图补充完整;
(3)学校为举办2018年度校园文化艺术节,决定从A.书法;B.绘画;C.乐器;D.舞蹈四项艺术形式中选择其中两项组成一个新的节目形式,请用列表法或树状图求出选中书法与乐器组合在一起的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点A的坐标为(m,0),m<0,点B与点A 关于原点对称,直线与双曲线交于C,D两点.
(1)直接判断后填空:四边形ACBD的形状一定是 ;
(2)若点D(1,t),求双曲线的解析式;
(3)在(2)的前提下,四边形ACBD为矩形时,求m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,∠BAC=60°,AD平分∠BAC交边BC于点D,分别过D作DE∥AC交边AB于点E,DF∥AB交边AC于点F.
(1)如图1,试判断四边形AEDF的形状,并说明理由;
(2)如图2,若AD=4,点H,G分别在线段AE,AF上,且EH=AG=3,连接EG交AD于点M,连接FH交EG于点N.
(i)求ENEG的值;
(ii)将线段DM绕点D顺时针旋转60°得到线段DM′,求证:H,F,M′三点在同一条直线上
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2020贺岁片《囧妈》提档大年三十网络首播.“乐调查”平台为了全面了解观众对《囧妈》的满意度情况,进行随机抽样调查,分为四个类别:.非常满意;.满意;.基本满意;.不满意,依据调查数据绘制成图1和图2的统计图(不完整).
根据以上信息,解答下列问题:
(1)本次接受调查的观众共有_______人;
(2)扇形统计图中,扇形的圆心角度数是_______;
(3)请补全条形统计图;
(4)“乐调查”平台调查了春节期间观看《固妈》的观众约5000人,请估计观众对该电影的满意(、、类视为满意)的人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等腰△ABC中,AB=BC.CD∥AB,点D在点C的右侧,点A,E关于直线BD对称,CE交BD于点F,AE交DB延长线于点G.
(1)(猜想)
如图①,当∠ABC=90°时,∠EFG=________;
(2)(探究)
在(1)的前提下,若AB=4,CD=1,求EF的长;
(3)(应用)
如图②,当∠ABC=120°时,若EF=2 ,AB=2,则CD=________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com