【题目】如图,抛物线与x轴交于A、B(A在B左侧)两点, 一次函数y=-x+4与坐标轴分别交于点C、D,与抛物线交于点M、N,其中点M的横坐标是.
(1)求出点C、D的坐标;
(2)求抛物线的表达式以及点A、B的坐标;
(3)在平面内存在动点P(P不与A,B重合),满足∠APB为直角,动点P到直线CD的距离是否有最小值,如果有,请直接写出这个最小值的结果;如果没有,请说明理由。
【答案】(1) C(0,4),D(4,0);(2); A(-2,0),B(2,0);(3).
【解析】试题分析:(1)点C、D一次函数y=-x+4与坐标轴的交点坐标,求解即可;(2)根据点M在直线y=-x+4上,求得点M的坐标,再代入求得a值,即可得抛物线的解析式;(3)如图,以AB为直径作⊙O,过点O作OG⊥CD于点G,交⊙O于点P,此时点P到直线CD的距离最小.由点C、D的坐标可得△COD为等腰直角三角形,利用勾股定理求得CD=4,根据等腰直角三角形的性质可得OG=2,根据点A、B的坐标求得AB=4,即可得OP=2,所以PG=OG-OP=2-2.
试题解析:
(1)把x=0代入y=-x+4得y=4 ,
∴C(0,4) .
把y=0代入y=-x+4得x=4,
∴D(4,0) .
(2)把x=代入y=-x+4得y=,
∴M(,),
把M(,)代入得 ,
∴a= .
∴.
当y=0时, ,
解得: ,
所以A(-2,0),B(2,0).
(3)动点P到直线CD的距离最小值是
科目:初中数学 来源: 题型:
【题目】如图,△ABC是以BC为底的等腰三角形,AD是边BC上的高,点E、F分别是AB、AC的中点.
(1)求证:四边形AEDF是菱形;
(2)如果四边形AEDF的周长为12,两条对角线的和等于7,求四边形AEDF的面积S.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某水果经销商上月份销售一种新上市的水果,平均售价为10元/千克,月销售量为1000千克.经市场调查,若将该种水果价格调低至x元/千克,则本月份销售量y(千克)与x(元/千克)之间符合一次函数关系,并且得到了表中的数据:
价格x(元/千克) | 7 | 5 |
价格y(千克) | 2000 | 4000 |
(1)求y与x之间的函数解析式;
(2)已知该种水果上月份的成本价为5元/千克,本月份的成本价为4元/千克,要使本月份销售该种水果所获利润比上月份增加20%,同时又要让顾客得到实惠,那么该种水果价格每千克应调低至多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知是⊙的直径,弦与交于点,过点作⊙的切线与的延长线交于点, 交直线于点.
()若,求证: 是⊙的切线;
()如果, 且为的中点,求直径的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读与探究
我们给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边.请结合上述阅读材料,解决下列问题:
在我们所学过的特殊四边形中,是勾股四边形的是________ (任写一种即可);
图1、图2均为的正方形网格,点均在格点上,请在图中标出格点,连接,使得四边形符合下列要求:图1中的四边形是勾股四边形,并且是轴对称图形;图2中的四边形是勾股四边形且对角线相等,但不是轴对称图形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,点A,B的坐标分别为(﹣1,0),(3,0),现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD.
(1)求点C,D的坐标及四边形ABDC的面积S四边形ABDC;
(2)在y轴上是否存在一点P,连接PA,PB,使S△PAB=S四边形ABDC?若存在这样一点,求出点P的坐标;若不存在,试说明理由;
(3)点P是直线BD上一个动点,连接PC、PO ,当点P在直线BD上运动时,请直接写出∠OPC与∠PCD、∠POB的数量关系
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,点为直线上一点,过点作射线,使,将一把直角三角尺的直角顶点放在点处,一边在射线上,另一边在直线的下方,其中.
(1)将图1中的三角尺绕点顺时针旋转至图2,使一边在的内部,且恰好平分,求的度数;
(2)将图1中三角尺绕点按每秒10的速度沿顺时针方向旋转一周,旋转过程中,在第 秒时,边恰好与射线平行;在第 秒时,直线恰好平分锐角.
(3)将图1中的三角尺绕点顺时针旋转至图3,使在的内部,请探究与之间的数量关系,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com