【题目】如图,已知的斜边,.
以点为圆心作圆,当半径为多长时,直线与相切?为什么?
以点为圆心,分别以和为半径作两个圆,这两个圆与直线分别有怎样的位置关系?
【答案】(1)以点为圆心,当半径为时,与相切;(2)以点为圆心,分别以和为半径作两个圆,这两个圆与直线分别相离和相交.
【解析】
(1)过点C作CD垂直于AB,根据直线与圆相切时,圆心到直线的距离等于圆的半径,可得出圆C与AB相切时,CD为此时圆C的半径,在直角三角形ABC中,由AB及AC的长,利用勾股定理求出BC的长,由直角三角形的面积可以由斜边AB与高CD乘积的一半来,也可以由两直角边乘积的一半来求,可得出CD的长,即为AB与圆C相切时的半径;
(2)用半径和CD的长比较后即可得到结论.
解:过作,交于点,如图所示:
的斜边,,
根据勾股定理得:,
∵,
∴,
则以点为圆心,当半径为时,与相切;
∵
∴以点为圆心,分别以和为半径作两个圆,这两个圆与直线分别相离和相交;
科目:初中数学 来源: 题型:
【题目】如图,已知一次函数y=kx+k+1的图象与一次函数y=﹣x+4的图象交于点A(1,a).
(1)求a、k的值;
(2)根据图象,写出不等式﹣x+4>kx+k+1的解;
(3)结合图形,当x>2时,求一次函数y=﹣x+4函数值y的取值范围;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小贤与小杰在探究某类二次函数问题时,经历了如下过程:
求解体验
(1)已知抛物线经过点(-1,0),则= ,顶点坐标为 ,该抛物线关于点(0,1)成中心对称的抛物线的表达式是 .
抽象感悟
我们定义:对于抛物线,以轴上的点为中心,作该抛物线关于
点对称的抛物线 ,则我们又称抛物线为抛物线的“衍生抛物线”,点为“衍生中心”.
(2)已知抛物线关于点的衍生抛物线为,若这两条抛物线有交点,求的取值范围.
问题解决
(3) 已知抛物线
①若抛物线的衍生抛物线为,两抛物线有两个交点,且恰好是它们的顶点,求的值及衍生中心的坐标;
②若抛物线关于点的衍生抛物线为 ,其顶点为;关于点的衍生抛物线为,其顶点为;…;关于点的衍生抛物线为,其顶点为;…(为
正整数).求的长(用含的式子表示).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】风电已成为我国继煤电、水电之后的第三大电源,风电机组主要由塔杆和叶片组成(如图①),图②是平面图.光明中学的数学兴趣小组针对风电塔杆进行了测量,甲同学站在平地上的A处测得塔杆顶端C的仰角是55°,乙同学站在岩石B处测得叶片的最高位置D的仰角是45°(D,C,H在同一直线上,G,A,H在同一条直线上),他们事先从相关部门了解到叶片的长度为15米(塔杆与叶片连接处的长度忽略不计),岩石高BG为4米,两处的水平距离AG为23米,BG⊥GH,CH⊥AH,求塔杆CH的高.(参考数据:tan55°≈1.4,tan35°≈0.7,sin55°≈0.8,sin35°≈0.6)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】随着人们“节能环保,绿色出行”意识的增强,越来越多的人喜欢骑自行车出行,同时也给自行车商家带来商机. 某自行车行销售型,型两种自行车,经统计,2019年此车行销售这两种自行车情况如下:自行车销售总额为8万元. 每辆型自行车的售价比每辆型自行车的售价少200元,型自行车销售数量是自行车的1. 25倍, 自行车销售总额比A型自行车销售总额多.
(1)求每辆型自行车的售价多少元.
(2)若每辆型自行车进价1400元,每辆型自行车进价1300元,求此自行车行2019年销售型自行车的总利润.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数,,是常数,且中的与的部分对应值如下表所示,则下列结论中,正确的个数有( )
;当时,;当时,的值随值的增大而减小;
方程有两个不相等的实数根.
A. 4个 B. 3个 C. 2个 D. 1个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,有长为24m的篱笆,围成中间隔有一道篱笆的长方形的花圃,且花圃的长可借用一段墙体(墙体的最大可用长度a=10m).
(1)如果所围成的花圃的面积为45m2,试求宽AB的长;
(2)按题目的设计要求,能围成面积比45m2更大的花圃吗?如果能,请求出最大面积,并说明围法;如果不能,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com