【题目】如图,在平面直角坐标系中,二次函数的图象交坐标轴于A(-1,0),B(4,0),C(0,-4)三点,点P是直线BC下方抛物线上一动点.
(1)写出这个二次函数的解析式;
(2)是否存在点P,使△POC是以OC为底边的等腰三角形?若存在,求出P点坐标;不存在,请说明理由;
(3)过点P作x轴的垂线,交直线BC于点E,动点P运动到什么位置时,线段PE的值最大,求出此时P点坐标.
【答案】(1);(2)存在,(,﹣2);(3)当m=2时,PE的值最大,此时P点坐标为(2,-6)
【解析】
(1)把已知的点的坐标代入函数解析式,利用待定系数法直接求解.
(2)利用△POC是以OC为底边的等腰三角形,所以,所以P在OC的垂直平分线上,点P在直线BC下方抛物线上,所以P是垂直平分线与抛物线的交点,通过解方程得到答案.
(3)过点P作x轴的垂线,交BC于E,设出P的坐标,可知E的横坐标与P的横坐标相同,利用直线BC的解析式表示E的纵坐标,由PE=建立函数关系式,利用二次函数的性质求最大值即可.
解:(1)设抛物线为:
把A(-1,0),B(4,0),C(0,-4)代入得:
解得:
所以抛物线解析式为
(2)作OC的垂直平分线DP,
交OC于点D,交BC下方
抛物线于点P,如图1,
∴PO=PD,
此时P点即为满足条件的点,
∵C(0,-4),
∴D(0,﹣2),
∴P点纵坐标为﹣2,
代入抛物线解析式可得,
解得(小于0,舍去),
∴存在满足条件的P点,
其坐标为(,﹣2)
(3)∵点P在抛物线上,
可设P(m,m2-3m-4)
由B(4,0),C(0,-4)
所以直线B C的解析式为:y=x-4
∴点E坐标为(m,m-4)
∴PE= (m-4)-( m2-3m-4)
=-m2+4m
=-(m-2)2+4
∵-1<0
∴当m=2时,PE的值最大,
此时P点坐标为(2,-6)
科目:初中数学 来源: 题型:
【题目】如图1,等腰Rt△ABC中,∠A=90°,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.
(1)观察猜想:图1中,线段PM与PN的数量关系是 ,位置关系是 ;
(2)探究证明:把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;
(3)拓展延伸:把△ADE绕点A在平面内自由旋转,若AD=8,AB=20,请直接写出△PMN面积的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图三角形ABC,BC=12,AD是BC边上的高AD=10.P,N分别是AB,AC边上的点,Q,M是BC上的点,连接PQMN,PN交AD于E.求
(1)若四边形PQMN是矩形,且PQ:PN=1:2.求PQ、PN的长;
(2)若四边形PQMN是矩形,求当矩形PQMN面积最大时,求最大面积和PQ、PN的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB为⊙O的直径,且AB=m(m为常数),点C为的中点,点D为圆上一动点,过A点作⊙O的切线交BD的延长线于点P,弦CD交AB于点E.
(1)当DC⊥AB时,则= ;
(2)①当点D在上移动时,试探究线段DA,DB,DC之间的数量关系;并说明理由;
②设CD长为t,求△ADB的面积S与t的函数关系式;
(3)当时,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】现代互联网技术的广泛应用,催生了快递行业的高速发展.阜阳市某家快递公司,2017年3月份与5月份完成投递的快递总件数分别为10万件和12.1万件.现假定该公司每月投递的快递总件数的增长率相同.
(1)求该快递公司投递快递总件数的月平均增长率?
(2) 如果平均每人每月最多可投递快递0.6万件,那么该公司现有的21名快递投递业务员能否完成2017年6月份的快递投递任务?如果不能,请问至少需要增加几名业务员?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某塔观光层的最外沿点E为蹦极项目的起跳点.已知点E离塔的中轴线AB的距离OE为10米,塔高AB为123米(AB垂直地面BC),在地面C处测得点E的仰角α=45°,从点C沿CB方向前行40米到达D点,在D处测得塔尖A的仰角β=60°,求点E离地面的高度EF.(结果精确到0.1米)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:
①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1的实数).
其中正确的结论有( )
A.2个B.3个C.4个D.5个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,光明中学一教学楼顶上竖有一块高为AB的宣传牌,点E和点D分别是教学楼底部和外墙上的一点(A,B,D,E在同一直线上),小红同学在距E点9米的C处测得宣传牌底部点B的仰角为67°,同时测得教学楼外墙外点D的仰角为30°,从点C沿坡度为1∶的斜坡向上走到点F时,DF正好与水平线CE平行.
(1)求点F到直线CE的距离(结果保留根号);
(2)若在点F处测得宣传牌顶部A的仰角为45°,求出宣传牌AB的高度(结果精确到0.01).(注:sin67°≈0.92,tan67°≈2.36,≈1.41,≈1.73)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小亮一家在一湖泊中游玩,湖泊中有一孤岛,妈妈在孤岛P处观看小亮与爸爸在湖中划船(如图所示).小船从P处出发,沿北偏东60°方向划行200米到A处,接着向正南方向划行一段时间到B处.在B处小亮观测到妈妈所在的P处在北偏西37°的方向上,这时小亮与妈妈相距多少米(精确到1米)?
(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.41,≈1.73)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com