【题目】△ABC是等边三角形,点D、E分别在AB、BC上,BD=CE,连接AE,CD交于点O
(1)如图1,求证:CD=AE;
(2)如图2,作等边△AEF,连接BF,DF.直接写出图2中所有120度的角.
【答案】(1)见解析;(2)∠ADF,∠AOC,∠DOE,∠FBC
【解析】
(1)根据等边三角形的性质得出AB=BC,∠BAC=∠ACE=∠B=60°,根据“SAS”证明△CAE≌△BCD,即可证出结论;
(2)根据等边三角形的性质直接得出120度的角即可.
解:(1)∵△ABC是等边三角形,
∴∠B=∠ACE= 60°,BC=AC.
在△BCD≌△CAE中,
,
∴△BCD≌△CAE(SAS),
∴CD=AE.
(2)∵△AEF是等边三角形,
∴∠EAF=60°,AF=AE,
∴∠FAB+∠BAE=∠CAE+∠BAE,
∴∠FAB =∠CAE.
∵AF=AE,∠FAB =∠CAE,AB=AC,
∴△AFB≌△AEC(SAS),
∴∠ABF=∠ACE=60°,FB=EC,
∴∠FBC=∠ABF+∠ABE=120°.
∵BD=CE,FB=EC,
∴BD= FB
∴∠FDB=60°,且DF∥CE,
∴∠ADF=120°.
∵ DF∥CE,且DF=CE,
∴ 四边形DFEC是平行四边形,
∴ DC∥FE
∴∠AOD=∠AEF= 60°,
∴∠AOC=120°,
∴∠DOE=∠AOC=120°.
故120度角的有∠ADF,∠AOC,∠DOE,∠FBC.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,已知正比例函数y=x的图象与反比例函数y=的图象交于A(a,-2),B两点.
(1)求反比例函数的表达式和点B的坐标;
(2)P是第一象限内反比例函数图象上一点,过点P作y轴的平行线,交直线AB于点C,连接PO,若△POC的面积为3,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了改善小区环境,某小区决定要在一块一边靠墙(墙长25m)的空地上修建一个矩形绿化带ABCD,绿化带一边靠墙,另三边用总长为40m的栅栏围住(如图).若设绿化带的BC边长为x m,绿化带的面积为y m2.
(1)求y与x之间的函数关系式,并写出自变量x的取值范围;
(2)当x为何值时,满足条件的绿化带的面积最大.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(9分)已知:ABCD的两边AB,AD的长是关于x的方程的两个实数根.
(1)当m为何值时,四边形ABCD是菱形?求出这时菱形的边长;
(2)若AB的长为2,那么ABCD的周长是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,王华同学在晚上由路灯AC走向路灯BD,当他走到点P时,发现身后他影子的顶部刚好接触到路灯AC的底部,当他向前再步行12m到达Q点时,发现身前他影子的顶部刚好接触到路灯BD的底部.已知王华同学的身高是1.6m,两个路灯的高度都是9.6m.
(1)求两个路灯之间的距离;
(2)当王华同学走到路灯BD处时,他在路灯AC下的影子长是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:四边形ABCD中,AC为对角线,∠DAC=∠BCA,且AD=BC,CD⊥AD于点D。
(1)如图1,求证:四边形ABCD是矩形。
(2)如图2,点E和点F分别为边AB和边BC的中点,连接DE、DF分别交AC于点G和点H,连接BG,在不连接其它线段的情况下,请写出所有面积是△FHC面积的2倍的所有三角形。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0)和点B(3,0),与y轴交于点C,连接BC交抛物线的对称轴于点E、D是抛物线的顶点.
(1)求此抛物线的解析式;
(2)求点C和点D的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com