精英家教网 > 初中数学 > 题目详情

【题目】如图,已知抛物线y=x2+bx+cx轴交于点A(﹣10)和点B30),与y轴交于点C,连接BC交抛物线的对称轴于点ED是抛物线的顶点.

1)求此抛物线的解析式;

2)求点C和点D的坐标.

【答案】1y=x2+2x+3;(2C03),D14

【解析】

1)利用待定系数法进行求二次函数解析式即可;

2)二次函数解析式中令x=0,即可得到点C的坐标,将二次函数解析式配方成顶点式,即可得到点D的坐标.

1)由点A(﹣10)和点B30)得

解得:

∴抛物线的解析式为y=x2+2x+3

2)对于抛物线y=x2+2x+3,令x=0,得到y=3

C03),

y=x2+2x+3=﹣(x12+4

∴顶点D14).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,ABC中,ABACBAC的平分线交外接圆于DDEABEDMACM

(1)求证:BECM

(2)求证:ABAC=2BE

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC是等边三角形,点DE分别在ABBC上,BD=CE,连接AECD交于点O

1)如图1,求证:CD=AE

2)如图2,作等边△AEF,连接BFDF.直接写出图2中所有120度的角.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数yx的部分对应值如表:

x

1

0

2

3

4

y

5

0

4

3

0

下列结论:抛物线的开口向上;②抛物线的对称轴为直线x=2;③0<x<4,y>0;④抛物线与x轴的两个交点间的距离是4;⑤A(,2),B(,3)是抛物线上两点,,其中正确的个数是 ( )

A. 2B. 3C. 4D. 5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某广场设计的一建筑物造型的纵截面是抛物线的一部分,抛物线的顶点O落在水平面上,对称轴是水平线OC.点AB在抛物线造型上,且点A到水平面的距离AC=4米,点B到水平面距离为2米,OC=8米.

1)请建立适当的直角坐标系,求抛物线的函数解析式;

2)为了安全美观,现需在水平线OC上找一点P,用质地、规格已确定的圆形钢管制作两根支柱PAPB对抛物线造型进行支撑加固,那么怎样才能找到两根支柱用料最省(支柱与地面、造型对接方式的用料多少问题暂不考虑)时的点P?(无需证明)

3)为了施工方便,现需计算出点OP之间的距离,那么两根支柱用料最省时点OP之间的距离是多少?(不写求解过程)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某地要建造一个圆形喷水池,在水池中央垂直于水面安装一个花形柱子OAO恰在水面中心,安置在柱子顶端A处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下,且在过OA的任一平面上,抛物线形状如图(1)所示.图(2)建立直角坐标系,水流喷出的高度y(米)与水平距离x(米)之间的关系是.请回答下列问题:

(1)柱子OA的高度是多少米?

(2)喷出的水流距水平面的最大高度是多少米?

(3)若不计其他因素,水池的半径至少要多少米才能使喷出的水流不至于落在池外?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于的一元二次方程.

(1)当时,利用根的判别式判断方程根的情况;

(2)若方程有两个相等的实数根,请写出一组满足条件的的值,并求出此时方程的根.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处,已知折痕与边BC交于点O,连结AP、OP、OA.

(1)求证:OCP∽△PDA;

(2)若OCPPDA的面积比为1:4,求边AB的长;

(3)如图2,擦去折痕AO、线段OP,连结BP.动点M在线段AP上(点M与点P、A不重合),动点N在线段AB的延长线上,且BN=PM,连结MNPB于点F,作MEBP于点E.探究:当点M、N在移动过程中,线段EF与线段PB有何数量关系?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某工程队在我市实施棚户区改造过程中承包了一项拆迁工程.原计划每天拆迁因为准备工作不足,第一天少拆迁了.从第二天开始,该工程队加快了拆迁速度,第三天拆迁了.求:

该工程队第一天拆迁的面积;

若该工程队第二天、第三天每天的拆迁面积比前一天增加的百分数相同,求这个百分数.

查看答案和解析>>

同步练习册答案