【题目】如图,某广场设计的一建筑物造型的纵截面是抛物线的一部分,抛物线的顶点O落在水平面上,对称轴是水平线OC.点A、B在抛物线造型上,且点A到水平面的距离AC=4米,点B到水平面距离为2米,OC=8米.
(1)请建立适当的直角坐标系,求抛物线的函数解析式;
(2)为了安全美观,现需在水平线OC上找一点P,用质地、规格已确定的圆形钢管制作两根支柱PA、PB对抛物线造型进行支撑加固,那么怎样才能找到两根支柱用料最省(支柱与地面、造型对接方式的用料多少问题暂不考虑)时的点P?(无需证明)
(3)为了施工方便,现需计算出点O、P之间的距离,那么两根支柱用料最省时点O、P之间的距离是多少?(不写求解过程)
【答案】(1)抛物线的函数解析式为:y=x2;
(2)找法见解析
(3)两根支柱用料最省时,点O、P之间的距离是4米.
【解析】
(1)根据题意可以建立合适的平面直角坐标系,从而可以求得抛物线的解析式;
(2)根据两点之间线段最多,作出相应的图形,写出作法即可;
(3)根据前面的坐标系和抛物线解析式可以求得点B的坐标,再根据三角形相似可以求得两根支柱用料最省时点O、P之间的距离,注意此处只写出答案即可.
解:(1)如图,
以点O为原点、射线OC为y轴的正半轴建立直角坐标系,
设抛物线的函数解析式为y=ax2,
由题意知点A的坐标为(4,8).
∵点A在抛物线上,
∴8=a×42,
解得a=,
∴所求抛物线的函数解析式为:y=x2;
(2)找法:
延长AC,交建筑物造型所在抛物线于点D,
则点A、D关于OC对称.
连接BD交OC于点P,则点P即为所求.
(3)如上图,由题意知点B的横坐标为2,
∵点B在抛物线上,
∴点B的坐标为(2,2),
又∵点A的坐标为(4,8),
∴点D的坐标为(﹣4,8),
设直线BD的函数解析式为y=kx+b,
∴,
解得:k=﹣1,b=4.
∴直线BD的函数解析式为y=﹣x+4,
把x=0代入y=﹣x+4,得点P的坐标为(0,4),
两根支柱用料最省时,点O、P之间的距离是4米.
科目:初中数学 来源: 题型:
【题目】如图,将等边△ABC绕点C顺时针旋转120°得到△EDC,连接AD,BD.则下列结论:
①AC=AD;②BD⊥AC;③四边形ACED是菱形.
其中正确的个数是( )
A.0 B.1 C.2 D.3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:四边形ABCD中,AC为对角线,∠DAC=∠BCA,且AD=BC,CD⊥AD于点D。
(1)如图1,求证:四边形ABCD是矩形。
(2)如图2,点E和点F分别为边AB和边BC的中点,连接DE、DF分别交AC于点G和点H,连接BG,在不连接其它线段的情况下,请写出所有面积是△FHC面积的2倍的所有三角形。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=﹣x2+x+2交x轴于点A.B(A在B的右侧),与y轴交于点C,D为第一象限抛物线上的动点,则△ACD面积的最大值是_____
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0)和点B(3,0),与y轴交于点C,连接BC交抛物线的对称轴于点E、D是抛物线的顶点.
(1)求此抛物线的解析式;
(2)求点C和点D的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图1,△ABC中,∠BAC=90°,AB=AC,D,E在BC上,∠DAE=45°,为了探究BD,DE,CE之间的等量关系,现将△AEC绕A顺时针旋转90°后成△AFB,连接DF,经探究,你所得到的BD,DE,CE之间的等量关系式是 ;(无须证明)
(2)如图2,在△ABC中,∠BAC=120°,AB=AC,D,E在BC上,∠DAE=60°,∠ADE=45°,试仿照(1)的方法,利用图形的旋转变换,探究BD,DE,CE之间的等量关系,并证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】安徽郎溪农民张大伯为了致富奔小康,大力发展家庭养殖业.他准备用长的木栏围一个矩形的羊圈,为了节约材料同时要使矩形的面积最大,他利用了自家房屋一面长的墙,设计了如图所示的一个矩形羊圈.
(1)请你求出张大伯的矩形羊圈的面积;
(2)请你判断他的设计方案是否合理?如果合理,直接答合理;如果不合理又该如何设计?并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某数学课外兴趣小组成员在研究下面三个有联系的问题,请你帮助他们解决:
(1)如图1,矩形ABCD中,AB=a,BC=b,点E,F分别在AB,DC上,点G,H分别在AD,BC上且EF⊥GH,求的值.
(2)如图2,矩形ABCD中,AB=4,BC=3,将矩形对折,使得B、D重叠,折痕为EF,求EF的长.
(3)如图3,四边形ABCD中,∠ABC=90°,AB=AD=8,BC=CD=4,AM⊥DN,点M,N分别在边BC,AB上,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com