精英家教网 > 初中数学 > 题目详情

【题目】如图甲是一个大长方形剪去一个小长方形后形成的图形,已知动点P以每秒2cm的速度沿图甲的边框按从B→C→D→E→F→A的路径移动,相应的△ABP的面积S与时间t之间的关系如图乙中的图象表示.若AB=6cm,试回答下列问题

(1)图甲中的BC长是多少?

(2)图乙中的a是多少?

(3)图甲中的图形面积的多少?

(4)图乙中的b是多少?

【答案】(1)8cm; (2)24cm2;(3)60cm2;(4)17秒.

【解析】

(1)根据题意得:动点PBC上运动的时间是4秒,又由动点的速度,可得BC的长;

(2)由(1)可得BC的长,又由AB=6cm,可以计算出△ABP的面积,计算可得a的值;

(3)分析图形可得,甲中的图形面积等于AB×AF﹣CD×DE,根据图象求出CDDE的长,代入数据计算可得答案;

(4)计算BC+CD+DE+EF+FA的长度,又由P的速度,计算可得b的值.

(1)动点PBC上运动时,对应的时间为04秒,易得:BC=2cm/×4=8cm;

故图甲中的BC长是8cm;

(2)由(1)可得,BC=8cm,则:a=×BC×AB=24cm2

图乙中的a24cm2

(3)由图可得:CD=2×2=4cm,DE=2×3=6cm,

AF=BC+DE=14cm,又由AB=6cm,

则甲图的面积为AB×AF﹣CD×DE=60cm2

图甲中的图形面积为60cm2

(4)根据题意,动点P共运动了BC+CD+DE+EF+FA=8+4+6+2+14=34cm,

其速度是2cm/秒,则b==17秒,

图乙中的b17秒.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】爸爸和小芳驾车去郊外登山,欣赏美丽的达子香(兴安杜鹃),到了山下,爸爸让小芳先出发6min,然后他再追赶,待爸爸出发24min时,妈妈来电话,有急事,要求立即回去.于是爸爸和小芳马上按原路下山返回(中间接电话所用时间不计),二人返回山下的时间相差4min,假设小芳和爸爸各自上、下山的速度是均匀的,登山过程中小芳和爸爸之间的距离s(单位:m)关于小芳出发时间t(单位:min)的函数图象如图,请结合图象信息解答下列问题:

(1)小芳和爸爸上山时的速度各是多少?

(2)求出爸爸下山时CD段的函数解析式;

(3)因山势特点所致,二人相距超过120m就互相看不见,求二人互相看不见的时间有多少分钟?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校九年级学生开展踢毽子比赛活动,每班派5名学生参加,按团体总分多少排列名次,在规定时间内每人踢100个以上(含100个)为优秀.下表是成绩最好的甲班和乙班5名学生的比赛数据(单位:个):

1

2

3

4

5

总成绩

甲班

100

98

110

89

103

500

乙班

89

100

95

119

97

500

经统计发现两班总成绩相等,只好将数据中的其他信息作为参考.根据要求回答下列问题:

1)计算两班的优秀率;

2)求两班比赛数据的中位数;

3)求两班比赛数据的方差;

4)根据以上三条信息,你认为应该把冠军奖状发给哪一个班级?简述理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】《九章算术》是中国传统数学最重要的著作,在勾股章中有这样一个问题:今有邑方二百步,各中开门,出东门十五步有木,问:出南门几步而见木?

用今天的话说,大意是:如图,是一座边长为200步(是古代的长度单位)的正方形小城,东门位于的中点,南门位于的中点,出东门15步的处有一树木,求出南门多少步恰好看到位于处的树木(即点在直线上)?请你计算的长为__________步.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠C=90°,AC=AB.求证:∠B=30°.

请填空完成下列证明.

证明:如图,作Rt△ABC的斜边上的中线CD,

CD=AB=AD (   ).

∵AC=AB,

∴AC=CD=AD △ACD是等边三角形.

∴∠A=   °.

∴∠B=90°﹣∠A=30°.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】P是⊙O内一点,过点P作⊙O的任意一条弦AB,我们把PAPB的值称为点P关于⊙O幂值

(1)O的半径为6,OP=4.

①如图1,若点P恰为弦AB的中点,则点P关于⊙O幂值_____;

②判断当弦AB的位置改变时,点P关于⊙O幂值是否为定值,若是定值,证明你的结论;若不是定值,求点P关于⊙0幂值的取值范围;

(2)若⊙O的半径为r,OP=d,请参考(1)的思路,用含r、d的式子表示点P关于⊙O幂值幂值的取值范围_____;

(3)在平面直角坐标系xOy中,C(1,0),C的半径为3,若在直线y=x+b上存在点P,使得点P关于⊙C幂值6,请直接写出b的取值范围_____.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图 1,将两个完全相同的三角形纸片 ABC DEC重合放置,其中∠C=90°,∠B=∠E=30°.

1)如图2,固定△ABC,使△DEC 绕点 C 旋转,当点 D 恰好落 AB 边上时,

①填空:线段 DE AC 的位置关系是

②设△BDC 的面积为 S1,△AEC 的面积为 S2,求证:S1=S2

2)当△DEC 绕点 C 旋转到如图 3 所示的位置时,小明猜想(1 S1 S2 的数量关系仍然成立,并尝试分别作出了△BDC和△AECBCCE 边上的高,请你证明小明的猜想.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A(a,1)、B(﹣1,b)都在双曲线y=上,点P、Q分别是x轴、y轴上的动点,当四边形PABQ的周长取最小值时,PQ所在直线的解析式是(

A.y=x B.y=x+1 C.y=x+2 D.y=x+3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)作图发现:

如图1,已知,小涵同学以为边向外作等边和等边,连接.这时他发现的数量关系是

2)拓展探究:

如图2,已知,小涵同学以为边向外作正方形和正方形,连接,试判断之间的数量关系,并说明理由.

3)解决问题

如图3,要测量池塘两岸相对的两点的距离,已经测得米,,则 米.

查看答案和解析>>

同步练习册答案