精英家教网 > 初中数学 > 题目详情

【题目】《九章算术》是中国传统数学最重要的著作,在勾股章中有这样一个问题:今有邑方二百步,各中开门,出东门十五步有木,问:出南门几步而见木?

用今天的话说,大意是:如图,是一座边长为200步(是古代的长度单位)的正方形小城,东门位于的中点,南门位于的中点,出东门15步的处有一树木,求出南门多少步恰好看到位于处的树木(即点在直线上)?请你计算的长为__________步.

【答案】

【解析】由正方形的性质得到∠EDG=90°,从而∠KDC+∠HDA=90°,再由∠C+∠KDC=90°,得到∠C=∠HDA即有△CKD∽△DHA由相似三角形的性质得到CKKD=HDHA求解即可得到结论

DEFG是正方形,∴∠EDG=90°,∴∠KDC+∠HDA=90°.

∵∠C+∠KDC=90°,∴∠C=∠HDA

∵∠CKD=∠DHA=90°,∴△CKD∽△DHA

CKKD=HDHA,∴CK100=10015

解得CK=

故答案为:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知关于的一元二次方程有两个相等的实数根,关于的一元二次方程的两个实数根为,则的值为________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,BCAC,点DBC上,且DCAC,∠ACB的平分线CFAD于点F,点EAB的中点,连结EF

1)求证:EFBC

2)若四边形BDFE的面积为3,求AEF的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,∠BAC=90°,四边形EBOC是平行四边形,EB交⊙O于点D,连接CD并延长交AB的延长线于点F

1)求证:CF是⊙O的切线;

2)若∠F=30°EB=4,求图中阴影部分的面积(结果保留根号和π

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,ADBE相交于点M,连接CM
求证:
的度数用含的式子表示
如图2,当时,点PQ分别为ADBE的中点,分别连接CPCQPQ,判断的形状,并加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形的对角线交于点分别在上()且的延长线交于点的延长线交于点,连接.

1)求证:.

2)若正方形的边长为4的中点,求的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图甲是一个大长方形剪去一个小长方形后形成的图形,已知动点P以每秒2cm的速度沿图甲的边框按从B→C→D→E→F→A的路径移动,相应的△ABP的面积S与时间t之间的关系如图乙中的图象表示.若AB=6cm,试回答下列问题

(1)图甲中的BC长是多少?

(2)图乙中的a是多少?

(3)图甲中的图形面积的多少?

(4)图乙中的b是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线轴交于点两点,与交于点,且,则该抛物线的解析式为________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:若点Pab)在函数y=的图象上,将以a为二次项系数,b为一次项系数构造的二次函数y=ax2+bx称为函数y=的一个派生函数.例如:点(2 )在函数y=的图象上,则函数y=2x2+ 称为函数y=的一个派生函数.现给出以下两个命题:

1)存在函数y=的一个派生函数,其图象的对称轴在y轴的右侧

2)函数y=的所有派生函数的图象都经过同一点,下列判断正确的是(  )

A. 命题(1)与命题(2)都是真命题

B. 命题(1)与命题(2)都是假命题

C. 命题(1)是假命题,命题(2)是真命题

D. 命题(1)是真命题,命题(2)是假命题

查看答案和解析>>

同步练习册答案