精英家教网 > 初中数学 > 题目详情

【题目】已知二次函数y=ax2+bx+c图象的对称轴为y轴,且过点(1,2),(2,5).

(1)求二次函数的解析式;

(2)如图,过点E(O,2)的一次函数图象与二次函数的图象交于A,B两点(A点在B点的左侧),过点A,B分别作ACx轴于点C,BDx轴于点D。

①当CD=3时,求该一次函数的解析式;

②分别用S1,S2,S3表示ACE,ECD,EDB的面积,问是否存在实数t,使得=tS1S3,都成立?若存在,求出t的值;若不存在,说明理由。

【答案】(1);(2)①,②存在实数,使得成立,理由见解析

【解析】

(1)根据对称轴方程、和过点(1,2),(2,5),用待定系数法即可解答

(2)①设过点的一次函数的解析式为,则,解得m=2,即该一次函数的解析式为. ,则.代入,得,再由即可求出解得k所以一次函数的解析式是.

②根据三角形面积公式可得所以S1S3=-x1y1·x2y2=- x1 x2(kx1+2)( kx2+2)= - x1 x2[k2x1x2+2k(x1 +x2)+4]从而求解.

(1)依题意,得,解得

∴二次函数的解析式为.

(2)设过点的一次函数的解析式为

即该一次函数的解析式为.

,则.

代入,得

解得

.

①依题意,

解得

∴该一次函数的解析式是.

②依题意,得

.

故存在实数,使得成立.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知菱形ABCD的对角线相交于点O,延长AB至点E,使BE=AB,连接CE.

(1)求证:BD=EC;

(2)若∠E=50°,求∠BAO的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,A1A2A3AnAn+1是直线上的点,且OA1=A1A2=A2A3=…AnAn+1=2,分别过点A1A2A3AnAn+1l1的垂线与直线相交于点B1B2B3BnBn+1,连接A1B2B1A2A2B3B2A3AnBn+1BnAn+1,交点依次为P1P2P3Pn,设P1A1A2P2A2A3P3A3A4PnAnAn+1的面积分别为S1S2S3Sn,则Sn=______.(用含有正整数n的式子表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,滑动调节式遮阳伞的立柱垂直于地面为立柱上的滑动调节点,伞体的截面示意图为中点,.当点位于初始位置时,点重合(图2).根据生活经验,当太阳光线与垂直时,遮阳效果最佳.

(1)上午10:00时,太阳光线与地面的夹角为(图3),为使遮阳效果最佳,点需从上调多少距离?(结果精确到

(2)中午12:00时,太阳光线与地面垂直(图4),为使遮阳效果最佳,点在(1)的基础上还需上调多少距离?(结果精确到

(参考数据:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,ADBCABBC,点EAB上,DEC90°

1)求证:ADE∽△BEC

2)若AD1BC3AE2,求AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线yax+x+4的对称轴是直线x3,且与轴相交于AB两点(B点在A点的右侧),与轴交于C点.

1)求出A点的坐标、B点坐标;

2)求出直线BC的解析式;

3)点Q是直线BC上方的抛物线上的一动点(不与BC重合),是否存在点Q,使QBC的面积最大.若存在,请求出QBC的最大面积,若不存在,试说明理由;

(4)Ex轴上,点F在抛物线上,以ACEF为顶点的四边形是平行四边形时,请直接写出点E的坐标。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示是二次函数yax2+bx+ca0)图象的一部分,直线x=﹣1是对称轴,有下列判断:①b2a0,②4a2b+c0,③ab+c=﹣9a,④若(﹣3y1),(y2)是抛物线上的两点,则y1y2.其中正确的是(  )

A. ①②③B. ①③C. ①④D. ①③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数y=ax2+bx+c的图象与x轴的交点的横坐标分别为-1,3,则下列结论正确的个数有 ac<0;2a+b=0;4a+2b+c>0;对于任意x均有ax2+bxa+b

A.1 B.2 C.3 D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在长方形ABCD中,AB=12cm,BC=10cm,点PA出发,沿A→B→C→D的路线运动,到D停止;点QD点出发,沿D→C→B→A路线运动,到A点停止.若P、Q两点同时出发,速度分别为每秒lcm、2cm,a秒时P、Q两点同时改变速度,分别变为每秒2cm、cm(P、Q两点速度改变后一直保持此速度,直到停止),如图2是△APD的面积s(cm2)和运动时间x(秒)的图象.

(1)求出a值;

(2)设点P已行的路程为y1(cm),点Q还剩的路程为y2(cm),请分别求出改变速度后,y1、y2和运动时间x(秒)的关系式;

(3)P、Q两点都在BC边上,x为何值时P、Q两点相距3cm?

查看答案和解析>>

同步练习册答案