【题目】如图,P是等边三角形ABC内的一点,且PA=6,PB=8,PC=10.
![]()
(1)尺规作图:作出将△PAC绕点A逆时针旋转60°后所得到的△P′AB(不要求写作法,但需保留作图痕迹).
(2)求点P与点P′之间的距离及∠APB的度数.
【答案】(1)详见解析;(2)PP′=6,∠APB=150°.
【解析】
(1)作等边三角形APP′,连接P′B,则△P′AB是所求作的三角形;
(2)根据旋转的性质得到∠PAP′=60°,PA=P′A=6,P′B=PC=10,利用等边三角形的判定方法得到△PAP′为等边三角形,再根据等边三角形的性质有PP′=PA=6,∠P′PA=60°,由于PP′2+PB2=P′B2,根据勾股定理的逆定理得到△BPP′为直角三角形,且∠BPP′=90°,则∠APB=∠P′PB+∠BPP′=60°+90°=150°.
解:(1)将△PAC绕点A逆时针旋转60°后所得到的△P′AB如图:
![]()
(2)如图,∵△PAC绕点A逆时针旋转60°后,得到△P′AB,
∴∠PAP′=60°,PA=P′A=6,P′B=PC=10,
∴△PAP′为等边三角形,
∴PP′=PA=6,∠P′PA=60°,
在△BPP′中,P′B=10,PB=8,PP′=6,
∵62+82=102,
∴PP′2+PB2=P′B2,
∴△BPP′为直角三角形,且∠BPP′=90°,
∴∠APB=∠P′PB+∠BPP′=60°+90°=150°.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,以AB为直径的⊙O分别与BC,AC相交于点D,E,BD=CD,过点D作⊙O的切线交边AC于点F.
(1)求证:DF⊥AC;
(2)若⊙O的半径为5,∠CDF=30°,求
的长(结果保留π).
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=90°,∠BAC的平分线交BC于点D,点O在AB上,以点O为圆心,OA为半径的圆恰好经过点D,分别交AC、AB于点E. F.
(1)试判断直线BC与⊙O的位置关系,并说明理由;
(2)若BD=2
,BF=2,求⊙O的半径.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在梯形ABCD中,AB∥CD,BC=CD,AD⊥BD,E为AB中点.
(1)求证:四边形BCDE是菱形.
(2)若AD=6,BD=8,求四边形BCDE的周长和面积.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A是反比例图数y=
(x<0)图象上一点,AC⊥x轴于点C,与反比例函数y=
(x<0)图象交于点B,AB=2BC,连接OA、OB,若△OAB的面积为3,则m+n=( )
![]()
A.﹣4B.﹣6C.﹣8D.﹣12
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校为了预测九年级男生“排球30秒”对墙垫球的情况,从本校九年级随机抽取了n名男生进行该项目测试,并绘制出如下的频数分布直方图,其中从左到右依次分为七个组(每组含最小值,不含最大值).根据统计图提供的信息解答下列问题:
(1)求n的值.
(2)这个样本数据的中位数落在第几组?
(3)若测试九年级男生“排球30秒”对墙垫球个数不低于10个为合格,根据统计结果,估计该校九年级450名男同学成绩合格的人数.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,在平面直角坐标系xOy中,点A的坐标为(0,2),点P(m,n)是抛物线
上的一个动点.
(1)如图1,过动点P作PB⊥x轴,垂足为B,连接PA,请通过测量或计算,比较PA与PB的大小关系:PA_____PB(直接填写“>”“<”或“=”,不需解题过程);
(2)请利用(1)的结论解决下列问题:
①如图2,设C的坐标为(2,5),连接PC,AP+PC是否存在最小值?如果存在,求点P的坐标;如果不存在,简单说明理由;
②如图3,过动点P和原点O作直线交抛物线于另一点D,若AP=2AD,求直线OP的解析式.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(12分)如图1,点O是正方形ABCD两对角线的交点,分别延长OD到点G,OC到点E,使OG=2OD,OE=2OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE.
![]()
(1)求证:DE⊥AG;
(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°)得到正方形OE′F′G′,如图2.
①在旋转过程中,当∠OAG′是直角时,求α的度数;
②若正方形ABCD的边长为1,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果不必说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com