精英家教网 > 初中数学 > 题目详情

【题目】已知直线l经过A(6,0)和B(0,12)两点,且与直线y=x交于点C.

(1)求直线l的解析式;
(2)若点P(x,0)在线段OA上运动,过点P作l的平行线交直线y=x于D,求△PCD的面积S与x的函数关系式;S有最大值吗?若有,求出当S最大时x的值;

(3)若点P(x,0)在x轴上运动,是否存在点P,使得△PCA成为等腰三角形?若存在,请写出点P的坐标;若不存在,请说明理由.

【答案】
(1)

解:设直线L解析式为y=kx+b,

将A(6,0)和B(0,12)代入,得:

解得:

∴直线L解析式为y=﹣2x+12;


(2)

解:解方程组:

得:

∴点C的坐标为(4,4),

∴SCOP= x×4=2x;

∵PD∥l,

=

∴△PCD的面积S与x的函数关系式为:

S=﹣ x2+2x,

∵S=﹣ (x﹣3)2+3,

∴当x=3时,S有最大值,最大值是3.


(3)

解:

存在点P,使得△PCA成为等腰三角形,

∵点C的坐标为(4,4),A(6,0),

根据P1C=CA,P3A=AC,P2A=AC,P4C=P4A时分别求出即可,

当P1C=CA时,P1(2,0),

当P2A=AC时,P2(6﹣2 ,0),

当P3A=AC时,P3(6+2 ,0),

当P4C=P4A时,P4(1,0),

∴点P的坐标分别为:

P1(2,0),P2(6﹣2 ,0),P3(6+2 ,0),P4(1,0).


【解析】(1)利用待定系数法将A(6,0)和B(0,12)代入解析式,求出即可;(2)将两函数解析式联立,得出点C的坐标,再利用平行线的性质,进而求出 ,再利用二次函数最值求出即可;(3)分别根据P1C=CA,P3A=AC,P2A=AC,P4C=P4A时结合图形求出即可.
【考点精析】本题主要考查了一次函数的图象和性质和二次函数的最值的相关知识点,需要掌握一次函数是直线,图像经过仨象限;正比例函数更简单,经过原点一直线;两个系数k与b,作用之大莫小看,k是斜率定夹角,b与Y轴来相见,k为正来右上斜,x增减y增减;k为负来左下展,变化规律正相反;k的绝对值越大,线离横轴就越远;如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值),即当x=-b/2a时,y最值=(4ac-b2)/4a才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知:如图,等腰△ABC中,AB=BC,AE⊥BC于E,EF⊥AB于F,若CE=2,cos∠AEF= ,求BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在四边形ABCD中,对角线AC、BD相交于点O,设锐角∠AOB=α,将△DOC按逆时针方向旋转得到△D′OC′(0°<旋转角<90°)连接AC′、BD′,AC′与BD′相交于点M.
(1)当四边形ABCD为矩形时,如图1.求证:△AOC′≌△BOD′.

(2)当四边形ABCD为平行四边形时,设AC=kBD,如图2.
①猜想此时△AOC′与△BOD′有何关系,证明你的猜想;
②探究AC′与BD′的数量关系以及∠AMB与α的大小关系,并给予证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB∥CD,AC与BD相交于点O,∠A=30°,∠COD=105°.则∠D的大小是(
A.30°
B.45°
C.65°
D.75°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,点E、F分别是AD、BC的中点,AC与EF相交于点O.
(1)过点B作AC的平行线BG,延长EF交BG于H;
(2)在(1)的图中,找出一个与△BHF全等的三角形,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】求证:角平分线上的点到这个角的两边距离相等. 已知:
求证:
证明:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是二次函数y=ax2+bx+c的图象,下列结论: ①二次三项式ax2+bx+c的最大值为4;
②4a+2b+c<0;
③一元二次方程ax2+bx+c=1的两根之和为﹣1;
④使y≤3成立的x的取值范围是x≥0.
其中正确的个数有(

A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两个不透明的口袋,甲口袋中装有3个分别标有数字﹣1,﹣2,﹣4的小球,乙口袋中装有3个分别标有数字﹣3,5,6的小球,它们的形状、大小完全相同,现随机从甲口袋中摸出一个小球记下数字,再从乙口袋中摸出一个小球记下数字.
(1)请用列表或树状图的方法(只选其中一种),表示出两次所得数字可能出现的所有结果;
(2)求出两个数字之积为正数的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知反比例函数y= 的图象在二四象限,一次函数为y=kx+b(b>0),直线x=1与x轴交于点B,与直线y=kx+b交于点A,直线x=3与x轴交于点C,与直线y=kx+b交于点D.
(1)若点A,D都在第一象限,求证:b>﹣3k;
(2)在(1)的条件下,设直线y=kx+b与x轴交于点E与y轴交于点F,当 = 且△OFE的面积等于 时,求这个一次函数的解析式,并直接写出不等式 >kx+b的解集.

查看答案和解析>>

同步练习册答案