精英家教网 > 初中数学 > 题目详情

【题目】已知反比例函数y= 的图象在二四象限,一次函数为y=kx+b(b>0),直线x=1与x轴交于点B,与直线y=kx+b交于点A,直线x=3与x轴交于点C,与直线y=kx+b交于点D.
(1)若点A,D都在第一象限,求证:b>﹣3k;
(2)在(1)的条件下,设直线y=kx+b与x轴交于点E与y轴交于点F,当 = 且△OFE的面积等于 时,求这个一次函数的解析式,并直接写出不等式 >kx+b的解集.

【答案】
(1)

证明:∵反比例函数y= 的图象在二四象限,

∴k<0,

∴一次函数为y=kx+b随x的增大而减小,

∵A,D都在第一象限,

∴3k+b>0,

∴b>﹣3k


(2)

解:由题意知:

①,

∵E(﹣ ,0),F(0,b),

∴SOEF= ×(﹣ )×b= ②,

由①②联立方程组解得:k=﹣ ,b=3,

∴这个一次函数的解析式为y=﹣ x+3,

解﹣ =﹣ x+3得x1= ,x2=

∴直线y=kx+b与反比例函数y= 的交点坐标的横坐标是

∴不等式 >kx+b的解集为 <x<0或x>


【解析】(1)由反比例函数y= 的图象在二四象限,得到k<0,于是得到一次函数为y=kx+b随x的增大而减小,根据A,D都在第一象限,得到不等式即可得到结论;(2)根据题意得到 ,由三角形的面积公式得到SOEF= ×(﹣ )×b= 联立方程组解得k=﹣ ,b=3,即可得到结论.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知直线l经过A(6,0)和B(0,12)两点,且与直线y=x交于点C.

(1)求直线l的解析式;
(2)若点P(x,0)在线段OA上运动,过点P作l的平行线交直线y=x于D,求△PCD的面积S与x的函数关系式;S有最大值吗?若有,求出当S最大时x的值;

(3)若点P(x,0)在x轴上运动,是否存在点P,使得△PCA成为等腰三角形?若存在,请写出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明和小亮用6张背面完全相同的纸牌进行摸牌游戏,游戏规则如下:将牌面分别标有数字1、3、6的三张纸牌给小明,将牌面分别标有数字2、4、5的三张纸牌给小亮,小明小亮分别将纸牌背面朝上,从各自的三张纸牌中随机抽出一张,并将抽出的两张卡片上的数字相加,如果和为偶数,则小明获胜;如果和为奇数,则小亮获胜.
(1)小明抽到标有数字6的纸牌的概率为
(2)请用树状图或列表的方法求小亮获胜的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算 +( 2 +| ﹣2|+3tan30°﹣2(π﹣ 0=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD中,AB=2,E为BC中点,两个动点M和N分别在边CD和AD上运动且MN=1,若△ABE与以D、M、N为顶点的三角形相似,则DM=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】太阳能光伏建筑是现代绿色环保建筑之一,老张准备把自家屋顶改建成光伏瓦面,改建前屋顶截面△ABC如图2所示,BC=10米,∠ABC=∠ACB=36°,改建后顶点D在BA的延长线上,且∠BDC=90°,求改建后南屋面边沿增加部分AD的长.(结果精确到0.1米) (参考数据:sin18°≈0.31,cos18°≈0.95.tan18°≈0.32,sin36°≈0.59.cos36°≈0.81,tan36°≈0.73)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在矩形ABCD中,BC>AB,∠BAD的平分线AF与BD、BC分别交于点E、F,点O是BD的中点,直线OK∥AF,交AD于点K,交BC于点G.

(1)求证:①△DOK≌△BOG;②AB+AK=BG;
(2)若KD=KG,BC=4﹣
①求KD的长度;
②如图2,点P是线段KD上的动点(不与点D、K重合),PM∥DG交KG于点M,PN∥KG交DG于点N,设PD=m,当SPMN= 时,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙O的直径为10,弦AB的长为6,M是弦AB上的一动点,则线段的OM的长的取值范围是(
A.3≤OM≤5
B.4≤OM≤5
C.3<OM<5
D.4<OM<5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一艘海轮位于灯塔P的北偏东60°方向,距离灯塔86n mile的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处,此时,B处与灯塔P的距离约为 n mile.(结果取整数,参考数据: ≈1.7, ≈1.4)

查看答案和解析>>

同步练习册答案