精英家教网 > 初中数学 > 题目详情
18.先化简:$({1-\frac{1}{x-1}})÷\frac{x}{{{x^2}-1}}$,再选择一个恰当的x值代入并求值.

分析 先算括号里面的,再算除法,选出合适的x的值代入进行计算即可.

解答 解:原式=$\frac{x-2}{x-1}$•$\frac{(x+1)(x-1)}{x}$
=$\frac{(x-2)(x+1)}{x}$,
当x=3时,原式=$\frac{(3-2)(3+1)}{3}$=$\frac{4}{3}$.

点评 本题考查的是分式的化简求值,分式中的一些特殊求值题并非是一味的化简,代入,求值.许多问题还需运用到常见的数学思想,如化归思想(即转化)、整体思想等,了解这些数学解题思想对于解题技巧的丰富与提高有一定帮助.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

8.计算或化简
(1)$\sqrt{12}-\sqrt{18}-\sqrt{0.5}+\sqrt{\frac{1}{3}}$
(2)$\frac{1}{2}\sqrt{10}×(3\sqrt{15}-5\sqrt{6})$
(3)$(3\sqrt{6}-4\sqrt{2})(3\sqrt{6}+4\sqrt{2})$
(4)${(\sqrt{5}-2)^2}+(\sqrt{5}+1)(\sqrt{5}+3)$
(5)$2\sqrt{5}(4\sqrt{20}-3\sqrt{45}+2\sqrt{5})$
(6)$\frac{1}{1-\sqrt{2}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.如图,菱形ABCD的边长为4,∠DAB=60°,E为BC的中点,在对角线AC上存在一点P,使△PBE的周长最小,则△PBE的周长的最小值为2$\sqrt{3}$+2.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.计算:($\frac{1}{a}+\frac{b}{a}$)$•\frac{2a}{b+1}$=2.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.某校数学兴趣小组开展了一次课外活动,过程如下:如图①,正方形ABCD中,AB=4,将三角板放在正方形ABCD上,使三角板的直角顶点与D点重合.三角板的一边交AB于点P,另一边交BC的延长线于点Q.
(1)求证:AP=CQ;
(2)如图②,小明在图1的基础上作∠PDQ的平分线DE交BC于点E,连接PE,他发现PE和QE存在一定的数量关系,请猜测他的结论并予以证明;
(3)在(2)的条件下,若AP=1,求PE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.如用,Rt△ABC中,AB⊥AC,AD⊥BC,BE平分∠ABC,交AD于E,EF∥AC,下列结论中:①AB=BF;②AE=ED;③AD=DC;④∠ABE=∠DFE;⑤$\frac{AB}{BD}$=$\frac{CF}{DF}$,正确的是(  )
A.①③B.①⑤C.③④D.①②⑤

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,在平面直角坐标系中二次函数y=ax2+bx+2的图象与x轴交于A(-1,0),B(4,0)两点,与y轴交于C点.连接BC,P是线段BC上方抛物线上的一点,过点P作PM∥y轴,交x轴于点M,交BC于点N,设点P的横坐标是m.
(1)直接写出二次函数及BC所在直线的表达式;
(2)①用含m的代数式表示PN的长度;
②若以O、C、N、P为顶点的四边形是平行四边形,求此时点P的坐标;
(3)连接PB、PC,求△PBC面积最大时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,在?ABCD中,∠BAD的平分线交BC于点E,∠ABC的平分线交AD于点F,AE与BF相交于点O,连接EF.
(1)求证:四边形ABEF是菱形;
(2)若AE=6,BF=8,CE=3,求?ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,△ABC是等腰直角三角形,∠A=90°,点D为AB边上一点,E为BC的中点,将线段DE绕点E顺时针旋转45°后与AC交于点F.
(1)作出点F;(保留作图痕迹,不写作法和证明)
(2)若BC=4,BD=$\frac{3}{2}$$\sqrt{2}$,求CF的长.

查看答案和解析>>

同步练习册答案