精英家教网 > 初中数学 > 题目详情
8.如图,△ABC是等腰直角三角形,∠A=90°,点D为AB边上一点,E为BC的中点,将线段DE绕点E顺时针旋转45°后与AC交于点F.
(1)作出点F;(保留作图痕迹,不写作法和证明)
(2)若BC=4,BD=$\frac{3}{2}$$\sqrt{2}$,求CF的长.

分析 (1)作∠CEF=∠BDE交AC于F,利用等腰直角三角形的性质和三角形的外角性质可得∠DEF=45°;
(2)证明△BDE∽△CEF,然后利用相似比可计算出CF的长.

解答 解:(1)如图,点F为所作;

(2)∵△ABC是等腰直角三角形,
∴∠B=∠C=45°,
∵∠BDE=∠CEF,
∴△BDE∽△CEF,
∴BE:CF=BD:CE,即2:CF=$\frac{3\sqrt{2}}{2}$:2,
∴CF=$\frac{4\sqrt{2}}{3}$.

点评 本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.解决(2)小题的关键是证明△BDE∽△CEF.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

18.先化简:$({1-\frac{1}{x-1}})÷\frac{x}{{{x^2}-1}}$,再选择一个恰当的x值代入并求值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.计算:
(1)($\frac{1}{3}$)-1+($\frac{1}{2}$)2×(-2)3-(π-3)0
(2)4xy2•(-$\frac{3}{8}$x2yz3).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.已知关于x的方程x2-3x+2-m2=0
(1)当m=0时,解这个方程;
(2)若x=4是这个方程的一个根,求m的值及这个方程的另一个根;
(3)无论m取何值,这个方程是否总有两个不相等的实数根?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.若不论x取何实数,分式$\frac{2x-3}{{x}^{2}+4x+m}$总有意义,求m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.2tan60°,$\sqrt{8}$,$\root{3}{16}$,π这四个实数中,最大的数是(  )
A.2tan60°B.$\sqrt{8}$C.$\root{3}{16}$D.π

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.解下列分式方程:
(1)$\frac{x}{x-2}$-$\frac{1-{x}^{2}}{(x-2)(x-3)}$=$\frac{2x}{x-3}$;
(2)$\frac{x+1}{x-1}$-$\frac{4}{{x}^{2}-1}$=1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.解分式方程:$\frac{1}{x+10}$$+\frac{1}{(x+1)(x+2)}$$+\frac{1}{(x+2)(x+3)}$+…+$\frac{1}{(x+9)(x+10)}$=2.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.如图,在长方形ABCD中,AB=2$\sqrt{3}$,AC=4,E点为AB的中点,点P为对角线AC上的一动点.则①BC=2;②PD+PE的最小值等于$\sqrt{7}$.

查看答案和解析>>

同步练习册答案