精英家教网 > 初中数学 > 题目详情
20.解下列分式方程:
(1)$\frac{x}{x-2}$-$\frac{1-{x}^{2}}{(x-2)(x-3)}$=$\frac{2x}{x-3}$;
(2)$\frac{x+1}{x-1}$-$\frac{4}{{x}^{2}-1}$=1.

分析 (1)先把方程两边同时乘以(x-2)(x-3),求出x的值,代入公分母进行检验即可;
(2)先把方程两边同时乘以(x+1)(x-1),求出x的值,代入公分母进行检验即可.

解答 解:(1)方程两边同时乘以(x-2)(x-3)得,x(x-3)-(1-x2)=2x(x-2),解得x=1,
检验:当x=1时,(x-2)(x-3)=(1-2)(1-3)=2≠0,
故x=1是原分式方程的解;

(2)方程两边同时乘以(x+1)(x-1)得,(x+1)2-4=x2-1,解得x=1,
检验:当x=1时,(x+1)(x-1)=(1+1)(1-1)=0,
故x=1是原分式方程的增根,原分式方程无解.

点评 本题考查的是解分式方程,在解答此类问题时要注意验根.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

10.如图,在平面直角坐标系中二次函数y=ax2+bx+2的图象与x轴交于A(-1,0),B(4,0)两点,与y轴交于C点.连接BC,P是线段BC上方抛物线上的一点,过点P作PM∥y轴,交x轴于点M,交BC于点N,设点P的横坐标是m.
(1)直接写出二次函数及BC所在直线的表达式;
(2)①用含m的代数式表示PN的长度;
②若以O、C、N、P为顶点的四边形是平行四边形,求此时点P的坐标;
(3)连接PB、PC,求△PBC面积最大时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.写出下列各题中x与y之间的关系式,并判定y是否为x的一次函数,是否为正比例函数.
(1)每盒铅笔12支,售价2.4元,铅笔售价y(元)与铅笔支数x(支)之间的关系;
(2)汽车由北京驶往相距120千米的天津,它的平均速度是40千米/时,汽车距天津的路程y(千米)与行驶时间x(时)的关系;
(3)一个长方形的面积是16cm2,它的一边长y(cm)与邻边长x(cm)的关系.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,△ABC是等腰直角三角形,∠A=90°,点D为AB边上一点,E为BC的中点,将线段DE绕点E顺时针旋转45°后与AC交于点F.
(1)作出点F;(保留作图痕迹,不写作法和证明)
(2)若BC=4,BD=$\frac{3}{2}$$\sqrt{2}$,求CF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.计算:sin60°+tan60°•cos30°-tan245°+($\sqrt{3}$)cos0°

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.已知A(-4,2)、B(n,-4)是直线y1=kx+b的图象与双曲线y2=$\frac{m}{x}$的两个交点.
(1)求它们的解析式;
(2)根据图象写出使y1<y2的x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,AD是Rt△ABC斜边BC上的中线,过A,D两点的⊙O交AC于E,弦EF∥BC.
(1)求证:AD=EF;
(2)若O在AC边上,且⊙O与BC边相切,当EF=2时,求$\widehat{EF}$的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图1,正方形ABCD中,点E是CD的延长线上一点,将△ADE沿AE对折至△AFE,FE的延长线与BC的延长线交于点G,连接AG.
(1)求证:AG平分∠FAB;
(2)如图2,GB的延长线交FA的延长线于点H,试探究线段DE、AH、BH三者之间的数量关系;
(3)在(2)的条件填空:∠GAE=45°度;若DC=2DE,则$\frac{BH}{CG}$=$\frac{3}{8}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.已知a2+ab=5,ab+b2=-2,a+b=7,那么a-b=1.

查看答案和解析>>

同步练习册答案