精英家教网 > 初中数学 > 题目详情
13.2tan60°,$\sqrt{8}$,$\root{3}{16}$,π这四个实数中,最大的数是(  )
A.2tan60°B.$\sqrt{8}$C.$\root{3}{16}$D.π

分析 直接利用特殊角的三角函数值,以及利用平方根和立方根的定义化简求出答案.

解答 解:∵2tan60°=2$\sqrt{3}$≈3.46,$\sqrt{8}$=2$\sqrt{2}$≈2.8,2<$\root{3}{16}$<3,π≈3.14,
∴这四个实数中,最大的数是2tan60°.
故选:A.

点评 此题主要考查了实数比较大小以及特殊角的三角函数值,正确化简各数是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

3.如用,Rt△ABC中,AB⊥AC,AD⊥BC,BE平分∠ABC,交AD于E,EF∥AC,下列结论中:①AB=BF;②AE=ED;③AD=DC;④∠ABE=∠DFE;⑤$\frac{AB}{BD}$=$\frac{CF}{DF}$,正确的是(  )
A.①③B.①⑤C.③④D.①②⑤

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.某校组织了“安全在我心中”知识竞赛活动.根据获奖同学在竞赛中的成绩制成的统计图表如下:
分数段频数频率
80≤x<85a0.2
85≤x<9080b
90≤x<9560c
95≤x<100200.1
根据以上图表提供的信息,解答下列问题:
(1)求出表中a、b、c的数值,并补全频数分布直方图;
(2)如果成绩在95分以上(含95分)的可以获得特等奖,那么获奖的同学获得特等奖的概率是多少?
(3)获奖成绩的中位数落在哪个分数段?并估算全部获奖同学的平均分.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.在平面直角坐标系中,点A(0,3),B(5,0),连接AB.
(1)将绕点O按逆时针方向旋转,得到△OCD,(点A落到点C处),求经过B、C、D三点的抛物线的解析式.
(2)现将(1)中抛物线向右平移两个单位,点C的对应点为E,点B的对应点为N,平移后的抛物线与原抛物线相交于点F;P、Q为平移后抛物线对称轴上的两个动点,(点Q在点P的上方),且PQ=1,要使四边形PQFE的周长最小,求出P、Q两点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,△ABC是等腰直角三角形,∠A=90°,点D为AB边上一点,E为BC的中点,将线段DE绕点E顺时针旋转45°后与AC交于点F.
(1)作出点F;(保留作图痕迹,不写作法和证明)
(2)若BC=4,BD=$\frac{3}{2}$$\sqrt{2}$,求CF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.若不等式组$\left\{\begin{array}{l}{x≤2}\\{x>m+1}\end{array}\right.$恰有三个整数解,则m的取值范围是-2≤m<-1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.已知A(-4,2)、B(n,-4)是直线y1=kx+b的图象与双曲线y2=$\frac{m}{x}$的两个交点.
(1)求它们的解析式;
(2)根据图象写出使y1<y2的x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图①,菱形ABCD中,对角线AC、BD相交于点O,AB=5,AC=2$\sqrt{5}$,E、F、G、H分别为菱形的四边中点,顺次连接E、F、G、H四点得矩形EFGH.
(1)求矩形EFGH的边EF、EH的长;
(2)如图②,固定菱形ABCD,将矩形EFGH沿OD方向向右平移,直至点D落在EF上时停止运动.设平移距离为x,记矩形EFGH与菱形ABCD重叠部分的面积为S,求S与x之间的函数关系式,并指出x的取值范围;
(3)如图③,固定菱形ABCD,将矩形EFGH绕点O旋转,使边EH的中垂线OM交线段AD于点M,射线OH交线段CD于点N,连接MN.当△MDN为直角三角形时,请直接写出AM的长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.已知∠BAC=30°,AB=3,AC=4,M在AC上,N在AB上,则BM+MN+NC的最小值是$\frac{3}{2}$+2$\sqrt{3}$.

查看答案和解析>>

同步练习册答案