【题目】如图1,在矩形纸片中,,,折叠纸片使点落在上的点处,折痕为,过点作交于点.
(1)求证:四边形为菱形;
(2)当折痕的点与点重合时(如图2),求菱形的边长.
【答案】(1)见解析;(2)边长为.
【解析】
(1)根据一组对边平行且相等可证得:四边形BFEP为平行四边形,再加上PB=PE可得结论;
(2)先由折叠得:EC=BC=AD=5,利用勾股定理得:ED=4,设PE=x,则PB=x,AP=3-x,Rt△APE中,由勾股定理得:,解出即可;
(1)证明:有题意可知:
∵点与点关于对称,
,
∵
∴
∴∠BPF=
∴
∴
∴四边形BFED是平行四边形,
∵
∴四边形为菱形;
(2)如图,当点与点重合时,
由折叠可知:EC=BC=AD=5,
∵在直角△CDE中,CD=AB=3,
∴,
∴AE=1,
设PE=x,则PB=x,AP=3-x,
Rt△APE中,由勾股定理得:,
解得:,
即菱形的边长PB=.
科目:初中数学 来源: 题型:
【题目】已知:如图,四边形ABCD四条边上的中点分别为E、F、G、H,顺次连接EF、FG、GH、HE,得到四边形EFGH(即四边形ABCD的中点四边形).
(1)四边形EFGH是什么四边形?证明你的结论.
(2)当四边形ABCD的对角线满足 条件时,四边形EFGH是矩形;
(3)你学过的哪种特殊四边形的中点四边形是矩形? . (填一种即可)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,CB=CA,∠ACB=90°,点D在边BC上(与B,C不重合),四边形ADEF为正方形,过点F作FG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:①AC=FG;②S△FAB∶S四边形CBFG=1∶2;③∠ABC=∠ABF;④AD2=FQ·AC,其中正确结论的个数是( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形中,,分别为,上的点,,交于点,交于点,为的中点,交于点,连接.下列结论:①;②;③;④.其中正确的结论有( )
A.①②③B.①②④C.①③④D.①②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面坐标系中,正方形ABCD的位置如右图所示,点A的坐标为(1,0),点D的坐标为(0,2),延长CB交x轴于点A1,作正方形A1B1C1C,延长C1B1交x轴于点A2,作正方形A2B2C2C1,…按这样的规律进行下去,第2018个正方形的面积为( )
A. 5· B. 5· C. 5· D. 5·
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知如图,边长为2的正方形中,是对角线上的一个动点(与点、不重合),过点作,交射线于点,过点作,垂足为点.
(1)求证::
(2)在点的运动过程中,的长度是否发生变化?若不变,试求出这个不变的值,写出解答过程:若变化,试说明理由:
(3)在点的运动过程中,能否为等腰三角形?如果能,直接写出此时的长;如果不能,试说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD中,点E,F是对角线BD上两点,DE=BF.
(1)判断四边形AECF是什么特殊四边形,并证明;
(2)若EF=4,DE=BF=2,求四边形AECF的周长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,铁路上A,B两点相距25 km,C,D为两村庄,DA⊥AB于点A,CB⊥AB于点B,已知DA=15 km,CB=10 km,现在要在铁路AB上建一个土特产品收购站E,使得C,D两村到E站的距离相等,则E站应建在离A站多少km处?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】图中的折线表示某汽车的耗油量(单位:)与速度(单位:)之间的函数关系(),已知线段表示的函数关系中,该汽车的速度每增加,耗油量增加.
(1) 当速度为、时,该汽车的耗油量分别为_____、____;
(2) 速度是多少时,该汽车的耗油量最低?最低是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com