【题目】如图1,在中,,点D、E分别在边上,连接DE,且.
(1)问题发现:若,则______________________.
(2)拓展探究:若,将饶点C按逆时针旋转度,图2是旋转过程中的某一位置,在此过程中的大小有无变化?如果不变,请求出的值,如果变化,请说明理由;
(3)问题解决:若,将旋转到如图3所示的位置时,则的值为______________.(用含的式子表示)
【答案】(1);(2)有变化,理由见解析;(3)2cosβ
【解析】
(1)过E作EF⊥AB于F,根据等腰三角形性质得出∠A=∠C=∠DEC=45°,于是得到∠B=∠EDC=90°,以此得出四边形EFBD为矩形,得到EF=BD,推出△AEF是等腰直角三角形,根据等腰直角三角形性质得出结论即可;
(2)根据等腰三角形性质得出∠ACB=∠CAB=∠ECD=∠CED=30°,之后进一步根据相似三角形的性质解答即可;
(3)根据等腰三角形性质得出∠ACB=∠CAB=∠ECD=∠CED=β,再根据相似三角形性质得出,即,根据角的和差得到∠ACE=∠BCD,求得△ACE∽△BCD,证明出,过点B作BE⊥AC于F,则AC=2CF,根据相似三角形性质进一步得出结论即可.
如图1,过E作EF⊥AB于F,
∵BA=BC,DE=DC,∠ACB=∠ECD=45°,
∴∠A=∠C=∠DEC=45°,
∴∠B=∠EDC=90°,
∴四边形EFBD是矩形,
∴EF=BD,EF∥BC,
∴∠AEF=∠C=45°,
∴△AEF是等腰直角三角形,
∴;
(2)
大小有变化,理由如下:
由题意得:△ABC与△EDC是等腰三角形,
∴∠ACB=∠CAB=∠ECD=∠CED=30°,
∴△ABC∽△EDC,
∴,即,
又∵∠ECD+∠ECB=∠ACB+∠ECB,
∴∠ACE=∠BCD,
∴△ACE∽△BCD,
∴,
在△ABC中,如图2,过点B作BF⊥AC于F点,则AC=2CF,
在Rt△BCF中,CF=BC×cos30°=,
∴AC=,
∴;
(3)
由题意得:△ABC与△EDC是等腰三角形,且∠ACD=∠ECD=β,
∴∠ACB=∠CAB=∠ECD=∠CED=β,
∴△ABC∽△EDC,
∴,即,
又∵∠ECD+∠ECB=∠ACB+∠ECB,
∴∠ACE=∠BCD,
∴△ACE∽△BCD,
∴,
在△ABC中,如图3,过点B作BF⊥AC于F点,则AC=2CF,
在Rt△BCF中,CF=BCcosβ,
∴AC=2BCcosβ,
∴2cosβ.
科目:初中数学 来源: 题型:
【题目】小林家的洗手盘台面上有一瓶洗手液(如图1).当手按住顶部A下压如图2位置时,洗手液瞬间从喷口B流出路线呈抛物线经过C与E两点.瓶子上部分是由弧和弧组成,其圆心分别为D,C.下部分的是矩形CGHD的视图,GH=10cm,点E到台面GH的距离为14cm,点B距台面的距离为16cm,且B,D,H三点共线.若手心距DH的水平距离为2cm去接洗手液时,则手心距水平台面的高度为_____cm.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】随着技术的发展,人们对各类产品的使用充满期待.某公司计划在某地区销售第一款产品,根据市场分析,该产品的销售价格将随销售周期的变化而变化.设该产品在第(为正整数)个销售周期每台的销售价格为元,与之间满足如图所示的一次函数关系.
(1)求与之间的关系式;
(2)设该产品在第个销售周期的销售数量为(万台),与的关系可用来描述.根据以上信息,试问:哪个销售周期的销售收入最大?此时该产品每台的销售价格是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线交轴于、两点,交轴于点,点坐标为,以为直径作,与抛物线交于轴上同一点,连接、.
(1)求抛物线的解析式;
(2)点是延长线上一点,的平分线交于点,连接,求直线的解析式;
(3)在(2)的条件下,抛物线上是否存在点,使得?若存在,求出点坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,AB=10,BC=6.点P从点A出发,沿折线AB—BC向终点C运动,在AB上以每秒5个单位长度的速度运动,在BC上以每秒3个单位长度的速度运动.点Q从点C出发,沿CA方向以每秒2个单位长度的速度运动.点P、Q两点同时出发,当点P停止时,点Q也随之停止.设点P运动的时间为t秒.
(1)求线段AC的长.
(2)求线段BP的长.(用含t的代数式表示)
(3)设△APQ的面积为S,求S与t之间的函数关系式.
(4)连结PQ,当PQ与△ABC的一边平行或垂直时,直接写出t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,,,点是线段上的动点,将线段绕点顺时针旋转至,连接.已知,设为,为.
小明根据学习函数的经验,对函数随自变量的变化而变化的规律进行了探究,下面是小明的探究过程.请补充完整(说明:解答中所填数值均保留一位小数)
(1)通过取点、画图、测量,得到了与的几组值,如下表:
0 | 0.5 | 0.7 | 1.0 | 1.5 | 2.0 | 2.3 | |
1.7 | 1.3 | 1.1 | 0.7 | 0.9 | 1.1 |
的值约为____________;
(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图像.
(3)结合画出的函数图像,解决问题:
①线段的长度的最小值约为____________;
②,则的长度的取值范围是____________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,点D是BC边上的中点,连接AD.
(1)在AB边上求作一点O,使得以O为圆心,OB长为半径的圆与AD相切;(不写作法,保留作图痕迹)
(2)设⊙O与AD相切于点M,已知BD=8,DM=4,求⊙O的半径.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com