【题目】如图,在矩形纸片ABCD中,AB=3,BC=9.将矩形纸片折叠,使点B和点D重合.
(1)求ED的长;
(2)求折痕EF的长.
【答案】(1)5;(2)
【解析】
(1)先依据翻折的性质和平行线的性质证明三角形DEF为等腰三角形,从而得到ED=DF,设DE=x,则DF=x,FC=9-x,然后在△DFC中依据勾股定理列方程求解即可;
(2)过点E做EM垂直于BC,垂足为M.先求得MF的长度,然后依据勾股定理可求得EF的长.
解:(1)∵四边形ABCD为矩形,
∴AB=CD=3.
∵AD∥BC,
∴∠BFE=∠DEF.
∵∠BFE=∠EFD,
∴∠EFD=∠DEF,
∴DE=DF.
设DE=x,则DF=x,FC=9﹣x.
在Rt△DFC中,FC2+DC2=DF2,
∴(9﹣x)2+32=x2.解得x=5.
∴DE=5.
(2)过点E做EM垂直于BC,垂足为M.
根据(1)可知BF=DF=5,
AE=CF=4,
∵AE=CF=4,BF=DF=5,
∴MF=BF﹣BM=5﹣4=1.
∴Rt△MEF中,EF2=EM2+MF2=32+12=10
∴
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,二次函数的图像与轴交于、两点,与轴交于点,点是抛物线顶点,点是直线下方的抛物线上一动点.
()这个二次函数的表达式为____________.
()设直线的解析式为,则不等式的解集为___________.
()连结、,并把沿翻折,得到四边形,那么是否存在点,使四边形为菱形?若存在,请求出此时点的坐标;若不存在,请说明理由.
()当四边形的面积最大时,求出此时点的坐标和四边形的最大面积.
()若把条件“点是直线下方的抛物线上一动点.”改为“点是抛物线上的任一动点”,其它条件不变,当以、、、为顶点的四边形为梯形时,直接写出点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平行四边形ABCD中,AB=8cm,AD=12cm,点P在AD边上以每秒1cm 的速度从点A向点D运动,点Q在BC边上,以每秒4cm的速度从点C出发,在CB间往返运动,两个点同时出发,当点P到达点D时停止(同时点Q也停止),在运动以后,以P、D、Q、B四点组成平行四边形的次数有__次.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,数轴上、两点对应的有理数分別为和,点和点分别同时从点和点出发,以每秒个单位长度,每秒个单位长度的速度向数轴正方向运动,设运动时间为秒.
(1)当时,则、两点对应的有理数分别是______;_______;
(2)点是数轴上点左侧一点,其对应的数是,且,求的值;
(3)在点和点出发的同时,点以每秒个单位长度的速度从点出发,开始向左运动,遇到点后立即返回向右运动,遇到点后立即返回向左运动,与点相遇后再立即返回,如此往返,直到、两点相遇时,点停止运动,求点运动的路程一共是多少个单位长度?点停止的位置所对应的数是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是( )
A. 12B. 24C. 12D. 16
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是我国古代数学家杨辉最早发现的,称为“杨辉三角”.它的发现比西方要早五百年左右,由此可见我国古代数学的成就是非常值得中华民族自豪的!“杨辉三角”中有许多规律,如它的每一行的数字正好对应了(a+b)n(n为非负整数)的展开式中a按次数从大到小排列的项的系数。
例如,展开式中的系数1、2、1恰好对应图中第三行的数字;
再如,展开式中的系数1、3、3、1恰好对应图中第四行的数字。
请认真观察此图,写出(a+b)4的展开式,(a+b)4=_______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=a.将△BOC绕点C按顺时针方向旋转60°得△ADC,连接OD.
(1)求证:△COD是等边三角形;
(2)当a=150°时,试判断△AOD的形状,并说明理由;
(3)探究:当a为多少度时,△AOD是等腰三角形?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com