【题目】为了了解市民“获取新闻的最主要途径”,某市记者开展了一次抽样调查,根据调查结果绘制了如下尚不完整的统计图.
根据以上信息解答下列问题:
(1)这次抽样调查的样本容量是 ;通过“电视”了解新闻的人数占被调查人数的百分比为 ;扇形统计图中,“手机上网”所对应的圆心角的大小是 度;
(2)请补全条形统计图;
(3)若该市约有950万人,请你估计其中有多少万人将“电脑和手机上网”作为“获取新闻的最主要途径”?
【答案】(1) 1000,15%,144;(2)见解析;(3) 627.
【解析】
(1)根据“电脑上网”的人数和所占的百分比求出总人数,用“电视”的人数除以总人数可得百分比,用“手机上网”所占的比例乘以360°,即可得出答案;
(2)求出“报纸”的人数,从而补全统计图;
(3)用全市的总人数乘以“电脑和手机上网”所占的百分比,即可得出答案.
(1)这次抽样调查的样本容量是260÷26%=1000,
通过“电视”了解新闻的人数占被调查人数的百分比为×100%=15%,
扇形统计图中,“手机上网”所对应的圆心角的度数是×360°=144°,
故答案为:1000,15%,144;
(2)“报纸”的人数为:1000-260-400-150-90=100,
补全条形统计图如图:
(3)950×=627(人),
答:其中将“电脑和手机上网”作为“获取新闻的最主要途径”的总人数约有627万人.
科目:初中数学 来源: 题型:
【题目】如图,△ABC内接于⊙O,弦CD平分∠ACB,点E为弧AD上一点,连接CE、DE,CD与AB交于点N.
(1)如图1,求证:∠AND=∠CED;
(2)如图2,AB为⊙O直径,连接BE、BD,BE与CD交于点F,若2∠BDC=90°﹣∠DBE,求证:CD=CE;
(3)如图3,在(2)的条件下,连接OF,若BE=BD+4,BC=,求线段OF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,矩形ABCO的面积为15,边OA比OC大2.E为BC的中点,以OE为直径的⊙O′交轴于D点,过点D作DF⊥AE于点F。
(1)求OA、OC的长;
(2)求证:DF为⊙O′的切线;
(3)小明在解答本题时,发现△AOE是等腰三角形。由此,他断定:“直线BC上一定存在除点E以外的点P,使△AOP也是等腰三角形,且点P一定在⊙O′外”。你同意他的看法吗?请充分说明理由。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】关于x的方程|x2﹣x|﹣a=0,给出下列四个结论:①存在实数a,使得方程恰有2个不同的实根; ②存在实数a,使得方程恰有3个不同的实根;③存在实数a,使得方程恰有4个不同的实根;④存在实数a,使得方程恰有6个不同的实根;其中正确的结论个数是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知反比例函数的图象经过点P(2,﹣3).
(1)求该函数的解析式;
(2)若将点P沿x轴负方向平移3个单位,再沿y轴方向平移n(n>0)个单位得到点P′,使点P′恰好在该函数的图象上,求n的值和点P沿y轴平移的方向.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,AB=AC,点D是射线BC上一点(不与B,C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.
(1)若∠BAC=90°.
①如图1,当点D在线段BC上时,∠BCE= °;
②当点D在线段BC的延长线上时,如图2,①中的结论是否仍然成立?请说明理由;
(2)若∠BAC=75°,点D在射线BC上,∠BCE= °;
(3)若点D在直线BC上移动,其他条件不变.设∠BAC=α,∠BCE=β,α与β有怎样的数量关系?请直接写出你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,E,F分别是AD,BC的中点,AF与BE相交于点M,CE与DF相交于点N,QM⊥BE,QN⊥EC相交于点Q,PM⊥AF,PN⊥DF相交于点P,若2BC=3AB,记△ABM和△CDN的面积和为S,则四边形MQNP的面积为( )
A. S B. S C. S D. S
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,二次函数图象的顶点坐标为C(1,﹣2),直线y=kx+m的图象与该二次函数的图象交于A、B两点,其中A点坐标为(3,0),B点在y轴上.点P为线段AB上的一个动点(点P与点A、B不重合),过点P且垂直于x轴的直线与这个二次函数的图象交于点E.
(1)求这个二次函数的解析式;
(2)设点P的横坐标为x,求线段PE的长(用含x 的代数式表示);
(3)点D为直线AB与这个二次函数图象对称轴的交点,若以点P、E、D为顶点的三角形与△AOB相似,请求出P点的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com