精英家教网 > 初中数学 > 题目详情

【题目】为了了解市民获取新闻的最主要途,某市记者开展了一次抽样调查,根据调查结果绘制了如下尚不完整的统计图.

根据以上信息解答下列问题:

(1)这次抽样调查的样本容量是  ;通过电视了解新闻的人数占被调查人数的百分比为  ;扇形统计图中,手机上网所对应的圆心角的大小是  度;

(2)请补全条形统计图;

(3)若该市约有950万人,请你估计其中有多少万人将电脑和手机上网作为获取新闻的最主要途径”?

【答案】(1) 1000,15%,144;(2)见解析;(3) 627.

【解析】

(1)根据电脑上网的人数和所占的百分比求出总人数,用电视的人数除以总人数可得百分比,用手机上网所占的比例乘以360°,即可得出答案;

(2)求出报纸的人数,从而补全统计图;

(3)用全市的总人数乘以电脑和手机上网所占的百分比,即可得出答案.

(1)这次抽样调查的样本容量是260÷26%=1000,

通过电视了解新闻的人数占被调查人数的百分比为×100%=15%,

扇形统计图中,手机上网所对应的圆心角的度数是×360°=144°,

故答案为:1000,15%,144;

(2)“报纸的人数为:1000-260-400-150-90=100,

补全条形统计图如图:

(3)950×=627(人),

答:其中将电脑和手机上网作为获取新闻的最主要途径的总人数约有627万人.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,一把直尺,的直角三角板和光盘如图摆放,角与直尺交点,,则光盘的直径是( )

A. 3 B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC内接于⊙O,弦CD平分∠ACB,点E为弧AD上一点,连接CE、DE,CDAB交于点N.

(1)如图1,求证:∠AND=CED;

(2)如图2,AB为⊙O直径,连接BE、BD,BECD交于点F,若2BDC=90°﹣DBE,求证:CD=CE;

(3)如图3,在(2)的条件下,连接OF,若BE=BD+4,BC=,求线段OF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,矩形ABCO的面积为15,边OAOC2EBC的中点,以OE为直径的⊙O′轴于D点,过点DDF⊥AE于点F

1)求OAOC的长;

2)求证:DF⊙O′的切线;

3)小明在解答本题时,发现△AOE是等腰三角形。由此,他断定:直线BC上一定存在除点E以外的点P,使△AOP也是等腰三角形,且点P一定在⊙O′。你同意他的看法吗?请充分说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】关于x的方程|x2﹣x|﹣a=0,给出下列四个结论:①存在实数a,使得方程恰有2个不同的实根; ②存在实数a,使得方程恰有3个不同的实根;③存在实数a,使得方程恰有4个不同的实根;④存在实数a,使得方程恰有6个不同的实根;其中正确的结论个数是(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知反比例函数的图象经过点P(2,﹣3).

(1)求该函数的解析式;

(2)若将点P沿x轴负方向平移3个单位,再沿y轴方向平移n(n0)个单位得到点P′,使点P′恰好在该函数的图象上,求n的值和点P沿y轴平移的方向.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC中,ABAC,点D是射线BC上一点(不与BC重合),以AD为一边在AD的右侧作ADE,使ADAE,∠DAE=∠BAC,连接CE

1)若∠BAC90°

①如图1,当点D在线段BC上时,∠BCE   °

②当点D在线段BC的延长线上时,如图2,①中的结论是否仍然成立?请说明理由;

2)若∠BAC75°,点D在射线BC上,∠BCE   °

3)若点D在直线BC上移动,其他条件不变.设∠BACα,∠BCEβαβ有怎样的数量关系?请直接写出你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,E,F分别是AD,BC的中点,AF与BE相交于点M,CE与DF相交于点N,QM⊥BE,QN⊥EC相交于点Q,PM⊥AF,PN⊥DF相交于点P,若2BC=3AB,记ABM和CDN的面积和为S,则四边形MQNP的面积为(  )

A. S B. S C. S D. S

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,二次函数图象的顶点坐标为C(1,﹣2),直线y=kx+m的图象与该二次函数的图象交于A、B两点,其中A点坐标为(3,0),B点在y轴上.点P为线段AB上的一个动点(点P与点A、B不重合),过点P且垂直于x轴的直线与这个二次函数的图象交于点E.

(1)求这个二次函数的解析式;

(2)设点P的横坐标为x,求线段PE的长(用含x 的代数式表示);

(3)点D为直线AB与这个二次函数图象对称轴的交点,若以点P、E、D为顶点的三角形与△AOB相似,请求出P点的坐标.

查看答案和解析>>

同步练习册答案