【题目】如图,在矩形ABCD中,CD=3cm,BC=4cm,连接BD,并过点C作CN⊥BD,垂足为N,直线l垂直BC,分别交BD、BC于点P、Q.直线l从AB出发,以每秒1cm的速度沿BC方向匀速运动到CD为止;点M沿线段DA以每秒1cm的速度由点D向点A匀速运动,到点A为止,直线1与点M同时出发,设运动时间为t秒(t>0).
(1)线段CN= ;
(2)连接PM和QN,当四边形MPQN为平行四边形时,求t的值;
(3)在整个运动过程中,当t为何值时△PMN的面积取得最大值,最大值是多少?
![]()
【答案】(1)
;(2)t=
;(3)t=4时,△PMN的面积取得最大值,最大值为
.
【解析】
(1)由矩形的性质和勾股定理可求BD的长,由三角形的面积公式可求CN的长;
(2)由勾股定理可求DN的长,通过证明△DMN∽△DAB,可得
,可得DM的值,即可求t的值;
(3)分两种情况讨论,利用三角形面积公式列出△PMN的面积与t的关系式,可求△PMN的面积的最大值.
解:(1)∵四边形ABCD是矩形
∴BC=AD=4cm,∠BCD=90°=∠A,
∴BD=
=5cm,
∵S△BCD=
BC
CD=
BD
CN
∴CN=![]()
故答案为:![]()
(2)在Rt△CDN中,DN=
=![]()
∵四边形MPQN为平行四边形时
∴PQ∥MN,且PQ⊥BC,AD∥BC
∴MN⊥AD
∴MN∥AB
∴△DMN∽△DAB
∴![]()
即![]()
∴DM=
cm
∴t=![]()
(3)∵BD=5,DN=![]()
∴BN=![]()
如图,过点M作MH⊥BD于点H,
![]()
∵sin∠MDH=sin∠BDA=![]()
∴![]()
∴MH=
t
当0<t<![]()
∵BQ=t,
∴BP=
t,
∴PN=BD﹣BP﹣DN=5﹣
﹣
t=
﹣
t
∴S△PMN=
×PN×MH=
×
t×(
﹣
t)=﹣
t2+
t
∴当t=
s时,S△PMN有最大值,且最大值为
,
当t=
s时,点P与点N重合,点P,点N,点M不构成三角形;
当
<t≤4时,如图,
![]()
∴PN=BP﹣BN=
t﹣![]()
∴S△PMN=
×PN×MH=
×
t×(
t﹣
)=
t2﹣
t
当
<t≤4时,S△PMN随t的增大而增大,
∴当t=4时,S△PMN最大值为
,
∵
>![]()
∴综上所述:t=4时,△PMN的面积取得最大值,最大值为
.
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,函数
的图象G经过点
,直线
与y轴交于点B,与图象G交于点C.
(1)求m的值.
(2)横、纵坐标都是整数的点叫做整点.记图象G在点A,C之间的部分与线段BA,BC围成的区域(不含边界)为W.
①当直线l过点
时,直接写出区域W内的整点个数.
②若区域W内的整点不少于4个,结合函数图象,求k的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某超市促销活动,将A,B,C三种水果采用甲、乙、丙三种方式搭配装进礼盒进行销售.每盒的总成本为盒中A,B,C三种水果成本之和,盒子成本忽略不计.甲种方式每盒分别装A,B,C三种水果6kg,3kg,1kg;乙种方式每盒分别装A,B,C三种水果2kg,6kg,2kg.甲每盒的总成本是每千克A水果成本的12.5倍,每盒甲的销售利润率为20%;每盒甲比每盒乙的售价低25%;每盒丙在成本上提高40%标价后打八折出售,获利为每千克A水果成本的1.2倍.当销售甲、乙、丙三种方式搭配的礼盒数量之比为2:2:5时,则销售总利润率为_____.(利润率=利润÷成本×100%)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,一次函数y=﹣x+b的图象与反比例函数y=
(k≠0)的图象交于A、B点,与y轴交于点C,其中点A的半标为(﹣2,3)
(1)求一次函数和反比例函数的解析式;
(2)如图,若将点C沿y轴向上平移4个单位长度至点F,连接AF、BF,求△ABF的面积.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,AB=8.
(1)作△ABC的内角∠CAB的平分线,与边BC交于点D(用尺规作图,保留作图痕迹,不要求写作法);
(2)若AD=BD,求CD的长度.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某水产品养殖企业为指导该企业某种产品的养殖和销售,对历年市场行情和水产品的养殖情况进行了调查.调查发现这种水产品的每千克售价
(元)与销售月份
(月)满足关系式
+36,而其每千克成本
(元)与销售月份
(月)满足的函数关系如图所示:
![]()
(1)试确定
、
的值;
(2)求出这种水产品每千克的利润
(元)与销售月份
(月)之间的函数关系式;
(3)几月份出售这种水产品每千克利润最大?最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“双11”当天,重庆顺风快递公司出动所有车辆分上午、下午两批往成都送件,该公司共有甲、乙、丙三种车型,其中甲型车数量占公司车辆总数的
,乙型车辆是丙型车数量的2倍,上午安排甲车数量的
,乙车数量的
,丙车数量的
进行运输,且上午甲、乙、丙三种车型每辆载货量分别为15吨,10吨,20吨,则上午刚好运完当天全部快件重量的
;下午安排剩下的所有车辆运输完当天剩下的所有快件,且下午甲、乙、丙三种车型每辆载货量分别不得超过20吨,12吨,16吨,下午乙型车实际载货量为下午甲型车每辆实际载货量的
.已知同种货车每辆的实际载货量相等,甲、乙、丙三种车型每辆车下午的运输成本分别为50元/吨,90元/吨,60元/吨.则下午运输时,一辆甲种车、一辆乙种车、一辆丙种车总的运输成本最少为_____元.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:在平面直角坐标系中,抛物线y=ax2﹣2ax+4(a<0)交x轴于点A、B,与y轴交于点C,AB=6.
(1)如图1,求抛物线的解析式;
(2)如图2,点R为第一象限的抛物线上一点,分别连接RB、RC,设△RBC的面积为s,点R的横坐标为t,求s与t的函数关系式;
(3)在(2)的条件下,如图3,点D在x轴的负半轴上,点F在y轴的正半轴上,点E为OB上一点,点P为第一象限内一点,连接PD、EF,PD交OC于点G,DG=EF,PD⊥EF,连接PE,∠PEF=2∠PDE,连接PB、PC,过点R作RT⊥OB于点T,交PC于点S,若点P在BT的垂直平分线上,OB﹣TS=
,求点R的坐标.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校开展了以“不忘初心,牢记使命”为主题的知识竞赛,现从该校八、九年级各随机抽取10名学生的成绩进行整理,描述和分析(成绩用m表示),共分成四个组:A.80≤m<85,B.85≤m<90,C.90≤m<95,D.95≤m≤100.另外给出了部分信息如下:
八年级10名学生的成绩:99,80,99,86,99,96,90,100,89,82.
九年级10名学生的成绩在C组的数据:94,90,94.
八、九年级抽取学生成绩统计表 | ||
年级 | 八年级 | 九年级 |
平均数 | 92 | 92 |
中位数 | 93 | b |
众数 | c | 100 |
方差 | 52 | 50.4 |
根据以上信息,解答下列问题:
(1)上面图表中的a= ,b= ,c= .
(2)扇形统计图中“D组”所对应的圆心角的度数为 .
(3)根据以上信息,你认为哪个年级的学生对“不忘初心,牢记使命”的内容掌握较好?说明理由.(一条即可)
(4)该校九年级共有840名学生参加了知识竞赛活动,估计九年级参加此次知识竞赛活动成绩为较好(90≤m<95)的学生有多少人?
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com