精英家教网 > 初中数学 > 题目详情

【题目】如图,将边长为8的正方形纸片ABCD沿着EF折叠,使点C落在AB边的中点M处.点D落在点D'处,MD'AD交于点G,则△AMG的内切圆半径的长为____________

【答案】

【解析】

由折叠求BE长,证明△AGM∽△BME,求AG长,进而由勾股定理求出MG长,根据内切圆的性质及三角形面积法解得内切圆半径长.

:如图:

MAB边中点,

AM=MB=4

由折叠可得∠GME=C=90°,CE=ME

BE=x,由勾股定理可得x2+42=(8-x)2

解得x=3,∴BE=3

∵∠EMB+MEB=90°, EMB+AMG=90°,

∴∠AMG=MEB

∵∠A=B=90°,

∴△AGM∽△BME

,

AG=

由勾股定理得,MG=

∵⊙O为△AMG的内切圆,连接OHONOK

OHAMOHAG OKGM,OH=ON=OK=r

由△AMG面积可得,

r= .

故答案为:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在矩形 ABCD 中,AB5AD3.以点 B 为中心,顺时针旋转矩形 BADC,得到矩形 BEFG,点 A、DC 的对应点分别为 EFG

1)如图1,当点 E 落在 CD 边上时,求线段 CE 的长;

2)如图2,当点 E 落在线段 DF 上时,求证:∠ABD=∠EBD

3)在(2)的条件下,CDBE 交于点 H,求线段 DH 的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某数学兴趣小组在探究函数的图象和性质时,经历了以下探究过程:

1)列表如下:

写出表中mn的值:m n

2)描点并在图中画出函数的大致图象;

3)根据函数图象,完成以下问题:

①观察函数的图象,以下说法正确的有   (填写正确的序号)

A.对称轴是直线x1

B.函数的图象有两个最低点,其坐标分别是(﹣12)、(12);

C.当﹣1x1时,yx的增大而增大;

D.当函数的图象向下平移3个单位时,图象与x轴有三个公共点;

E.函数的图象,可以看作是函数的图象向右平移2个单位得到.

②结合图象探究发现,当m满足   时,方程有四个解.

③设函数的图象与其对称轴相交于P点,当直线yn和函数图象只有两个交点时,且这两个交点与点P所构成的三角形是等腰直角三角形,则n的值为____________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,已知点A12),B32),连接AB.若对于平面内一点P,线段AB上都存在点Q,使得PQ≤2,则称点P是线段AB影子

1)在点C01),D2),E45)中,线段AB影子

2)若点Mmn)在直线y=-x+2上,且不是线段AB影子,求m的取值范围.

3)若直线y=x+b上存在线段AB影子,求b的取值范围以及影子构成的区域面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,∠C=90°,以BC为直径的⊙OAB于点D,⊙O的切线DEAC于点E

1)求证:EAC中点;

2)若AB=10BC=6,连接CDOE,交点为F,求OF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】等腰△ABC的直角边AB=BC=10cm,点PQ分别从AC两点同时出发,均以1cm/秒的相同速度作直线运动,已知P沿射线AB运动,Q沿边BC的延长线运动,PQ与直线AC相交于点D.设P点运动时间为t△PCQ的面积为S

1)求出S关于t的函数关系式;

2)当点P运动几秒时,SPCQ=SABC

3)作PE⊥AC于点E,当点PQ运动时,线段DE的长度是否改变?证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将ABC沿角平分线BD所在直线翻折,顶点A恰好落在边BC的中点E处,AE=BD,那么tanABD=(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知△ABC的三个顶点的坐标分别为

1)点A关于y轴对称的点的坐标是

2)将△ABC绕坐标原点O顺时针旋转180°,画出图形,直接写出点B的对应点的坐标;

3)请直接写出:以ABC为顶点的平行四边形的第四个顶点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,ABAC5BC8,点D是边BC(不与BC重合)一动点,∠ADE=∠BDEAC于点E,若△DCE为直角三角形,则BD的值为_______.

查看答案和解析>>

同步练习册答案