精英家教网 > 初中数学 > 题目详情

【题目】如图,直线AB与半径为2的⊙O相切于点C,点D,E,F是⊙O上三个点,EF∥AB,若EF=2 ,则∠EDC的度数为( )

A.60°
B.90°
C.30°
D.75°

【答案】C
【解析】连接OC,与EF交于点G,再连接OE,

∵AB为圆O的切线,

∴OC⊥AB,

∵EF∥AB,

∴OC⊥EF,

∴EG=FG= EF=

在Rt△OEG中,OE=2,EG=

根据勾股定理得:OG=1,

∴∠OEG=30°,

∴∠EOG=60°,

∵∠EDC与∠EOC都对

则∠EDC=30°.

所以答案是:C.

【考点精析】关于本题考查的切线的性质定理,需要了解切线的性质:1、经过切点垂直于这条半径的直线是圆的切线2、经过切点垂直于切线的直线必经过圆心3、圆的切线垂直于经过切点的半径才能得出正确答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】为了鼓励市民节约用水,某市水费实行分段计费制,每户每月用水量在规定用量及以下的部分收费标准相同,超出规定用量的部分收费标准相同.例如:若规定用量为10吨,每月用水量不超过10吨按1.5/吨收费,超出10吨的部分按2/吨收费,则某户居民一个月用水8吨,则应缴水费:8×1.5=12(元);某户居民一个月用水13吨,则应缴水费:10×1.5+(13﹣10)×2=21(元).

表是小明家14月份用水量和缴纳水费情况,根据表格提供的数据,回答:

月份

用水量(吨)

6

7

12

15

水费(元)

12

14

28

37

(1)该市规定用水量为   吨,规定用量内的收费标准是   /吨,超过部分的收费标准是   /吨.

(2)若小明家五月份用水20吨,则应缴水费   元.

(3)若小明家六月份应缴水费46元,则六月份他们家的用水量是多少吨?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知∠DCE=90°,∠DAC=90°BEACB,且DC=EC

1)∠D和∠ECB相等吗?若相等,请说明理由;

2ADC≌△BCE吗?若全等,请说明理由;

3)能否找到与AB+AD相等的线段,并说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=x2+bx+c经过坐标原点,并与x轴交于点A(2,0).

(1)求此抛物线的解析式;
(2)写出顶点坐标及对称轴;
(3)若抛物线上有一点B,且SOAB=3,求点B的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC在平面直角坐标系中,且A-21)、B-3,-2)、C1-4).将其平移后得到△A1B1C1,若AB的对应点是A1B1C的对应点C1的坐标是(3-1).

1)在平面直角坐标系中画出△ABC和△A1B1C1

2)写出点A1的坐标是_____________B1坐标是___________

3)此次平移可看作△ABC________,平移了____________个单位长度,再向_______平移了______个单位长度得到△A1B1C1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点DE分别在ABAC上,DEBCFAD上一点,FE的延长线交BC的延长线于点G.求证:

(1)EGH>ADE

(2)EGHADEAAEF.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,边长为1的正方形OA1B1C1的两边在坐标轴上,以它的对角线OB1为边作正方形OB1B2C2 , 再以正方形OB1B2C2的对角线OB2为边作正方形OB2B3C3 , 以此类推…、则正方形OB2015B2016C2016的顶点B2016的坐标是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1BCAF于点C,∠A+∠190°.

1)求证:ABDE

2)如图2,点P从点A出发,沿线段AF运动到点F停止,连接PBPE.则∠ABP,∠DEP,∠BPE三个角之间具有怎样的数量关系(不考虑点P与点ADC重合的情况)?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,Rt△ABC中,∠ABC=90°,以AB为直径作半圆⊙O交AC与点D,点E为BC的中点,连接DE.

(1)求证:DE是半圆⊙O的切线.
(2)若∠BAC=30°,DE=2,求AD的长.

查看答案和解析>>

同步练习册答案