【题目】如图①,△ABC中,AB=AC,∠B、∠C的平分线交于O点,过O点作EF∥BC交AB、AC于E、F.
(1)图①中有几个等腰三角形?猜想:EF与BE、CF之间有怎样的关系.
(2)如图②,若AB≠AC,其他条件不变,图中还有等腰三角形吗?如果有,分别指出它们.在第(1)问中EF与BE、CF间的关系还存在吗?
(3)如图③,若△ABC中∠B的平分线BO与三角形外角平分线CO交于O,过O点作OE∥BC交AB于E,交AC于F.这时图中还有等腰三角形吗?EF与BE、CF关系又如何?说明你的理由.
【答案】(1)△AEF、△OEB、△OFC、△OBC、△ABC共5个,EF=BE+FC;(2)有,△EOB、△FOC,存在;(3)有,EF=BE-FC.
【解析】
(1)由AB=AC,可得∠ABC=∠ACB;又已知OB、OC分别平分∠ABC、∠ACB;故∠EBO=∠OBC=∠FCO=∠OCB;根据EF∥BC,可得:∠OEB=∠OBC=∠EBO,∠FOC=∠FCO=∠BCO;由此可得出的等腰三角形有:△AEF、△OEB、△OFC、△OBC、△ABC;
已知了△EOB和△FOC是等腰三角形,则EO=BE,OF=FC,则EF=BE+FC.
(2)由(1)的证明过程可知:在证△OEB、△OFC是等腰三角形的过程中,与AB=AC的条件没有关系,故这两个等腰三角形还成立.所以(1)中得出的EF=BE+FC的结论仍成立.
(3)思路与(2)相同,只不过结果变成了EF=BE-FC.
解:(1)图中是等腰三角形的有:△AEF、△OEB、△OFC、△OBC、△ABC;
EF、BE、FC的关系是EF=BE+FC.理由如下:
∵AB=AC,
∴∠ACB=∠ABC,△ABC是等腰三角形;
∵BO、CO分别平分∠ABC和∠ACB,
∴∠ABO=∠OBC=∠ABC,∠OCB=∠ACO=∠ACB,
∵EF∥BC,
∴∠EOB=∠OBC,∠FOC=∠OCB,
∴∠ABO=∠OBC=∠EOB=∠OCB=∠FOC=∠FCO,
∴△EOB、△OBC、△FOC都是等腰三角形,
∵EF∥BC,
∴∠AEF=∠ABC,∠AFE=∠ACB,
∴∠AEF=∠AFE,
∴△AEF是等腰三角形,
∵OB、OC平分∠ABC、∠ACB,
∴∠ABO=∠OBC,∠ACO=∠OCB;
∵EF∥BC,
∴∠EOB=∠OBC=∠EBO,∠FOC=∠OCB=∠FCO;
即EO=EB,FO=FC;
∴EF=EO+OF=BE+CF;
(2)当AB≠AC时,△EOB、△FOC仍为等腰三角形,(1)的结论仍然成立.
∵OB、OC平分∠ABC、∠ACB,
∴∠ABO=∠OBC,∠ACO=∠OCB;
∵EF∥BC,
∴∠EOB=∠OBC=∠EBO,∠FOC=∠OCB=∠FCO;
即EO=EB,FO=FC;
∴EF=EO+OF=BE+CF;
(3)△EOB和△FOC仍是等腰三角形,EF=BE-FC.理由如下:
同(1)可证得△EOB是等腰三角形;
∵EO∥BC,
∴∠FOC=∠OCG;
∵OC平分∠ACG,
∴∠ACO=∠FOC=∠OCG,
∴FO=FC,故△FOC是等腰三角形;
∴EF=EO-FO=BE-FC.
科目:初中数学 来源: 题型:
【题目】某人承包了一池塘养鱼,他想估计一下收入情况.于是让他上初三的儿子帮忙.他儿子先让他从鱼塘里随意打捞上了60条鱼,把每条鱼都作上标记,放回鱼塘;过了2天,他让他父亲从鱼塘内打捞上了50条鱼,结果里面有2条带标记的.假设当时这种鱼的市面价为2.8元/斤,平均每条鱼估计2.3斤,你能帮助他估计一下今年的收入情况吗?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在等腰三角形ABC中,∠ABC=90度,D是AC边上的动点,连结BD,E、F分别是AB、BC上的点,且DE⊥DF.、(1)如图1,若D为AC边上的中点.
(1)填空:∠C= ,∠DBC= ;
(2)求证:△BDE≌△CDF.
(3)如图2,D从点C出发,点E在PD上,以每秒1个单位的速度向终点A运动,过点B作BP∥AC,且PB=AC=4,点E在PD上,设点D运动的时间为t秒(0≤1≤4)在点D运动的过程中,图中能否出现全等三角形?若能,请直接写出t的值以及所对应的全等三角形的对数,若不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A,B为定点,定直线l//AB,P是l上一动点.点M,N分别为PA,PB的中点,对于下列各值:
①线段MN的长;
②△PAB的周长;
③△PMN的面积;
④直线MN,AB之间的距离;
⑤∠APB的大小.
其中会随点P的移动而变化的是( )
A. ②③ B. ②⑤ C. ①③④ D. ④⑤
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,弹性小球从点P(0,3)出发,沿所示方向运动,每当小球碰到矩形OABC的边时反弹,反弹时反射角等于入射角,当小球第1次碰到矩形的边时的点为P1,第2次碰到矩形的边时的点为P2,…,第n次碰到矩形的边时的点为Pn,点P2019的坐标是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在中,,,点是上一点.
(1)如图,平分.求证:;
(2)如图,点在线段上,且,,求证:.
(3)如图,,过点作交的延长线于点,连接,过点作交于,求证:.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线y=kx﹣10经过点A(12,0)和B(a,﹣5),双曲线y=经过点B.
(1)求直线y=kx﹣10和双曲线y=的函数表达式;
(2)点C从点A出发,沿过点A与y轴平行的直线向下运动,速度为每秒1个单位长度,点C的运动时间为t(0<t<12),连接BC,作BD⊥BC交x轴于点D,连接CD,
①当点C在双曲线上时,求t的值;
②在0<t<6范围内,∠BCD的大小如果发生变化,求tan∠BCD的变化范围;如果不发生变化,求tan∠BCD的值.
③当DC=时,请直接写出t的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com