精英家教网 > 初中数学 > 题目详情

【题目】已知:关于的方程

1)求证:方程有两个不相等的实数根;

2)设方程的两个实数根分别为(其中),若是关于的函数,且,求这个函数的解析式;

3)将(2)中所得的函数的图象在直线的左侧部分沿直线翻折,图象的其余部分保持不变,得到一个新的图象.请你结合这个新的图象回答:当关于的函数的图象与此图象有两个公共点时,的取值范围是   (直接写出答案).

【答案】1)详见解析;(2;(3

【解析】

1)证明判别式大于0即可

2)利用求根公式求出两根,再代入到即可求出解析式

3)先求出对折之后的函数解析式,再求出与函数的交点坐标,根据题意列出不等式求解即可.

1)根据题意得:

=3m+12-4m2m+2=(m-1)2

m>1

(m-1)2>0

∴方程有两个不相等的实数根.

2)根据题意=

m>1

=2=1+

y=m1+-4=m-3

(3)

根据题意新的函数为y=

函数的图象与此图象有两个公共点时,有

解得b<-5

∴答案为b<-5

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,抛物线yax2+2x+c经过点A03),B(﹣10),请解答下列问题:

1)求抛物线的解析式;

2)抛物线的顶点为点D,对称轴与x轴交于点E,连接BD,求BD的长;

3)点F在抛物线上运动,是否存在点F,使BFC的面积为6,如果存在,求出点F的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,ABBC,点EBC的中点,且EF//ABAEBF交于点O,连接EFOC

1)求证:四边形ABEF是菱形;

2)若BC8,∠ABC60°,求OEC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图某人为了测量小山顶上的塔ED的高他在山下的点A处测得塔尖点D的仰角为45°,再沿AC方向前进60 m到达山脚点B测得塔尖点D的仰角为60°,塔底点E的仰角为30°,求塔ED的高度.(结果保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数为常数).

1)当时,求二次函数的最小值;

2)当时,若在函数值的情况下,只有一个自变量的值与其对应,求此时二次函数的解析式;

3)当时,若在自变量的值满足的情况下,与其对应的函数值的最小值为21,求此时二次函数的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠ACB=90°,AB=5,AC=3,DBC上一动点,连接AD,将ACD沿AD折叠,点C落在点C'处,连接C'DAB于点E,连接BC',当BC'D是直角三角形时,DE的长为_________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0)、B(3,0).

(1)求b、c的值;

(2)如图1直线y=kx+1(k>0)与抛物线第一象限的部分交于D点,交y轴于F点,交线段BC于E点.求的最大值;

(3)如图2,抛物线的对称轴与抛物线交于点P、与直线BC相交于点M,连接PB.问在直线BC下方的抛物线上是否存在点Q,使得△QMB与△PMB的面积相等?若存在,求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,ACB=90°AC=8BC=6CDAB于点D.点P从点D 出发,沿线段DC向点C运动,点Q从点C出发,沿线段CA向点A运动,两点同时出发,速度都为每秒1个单位长度,当点P运动到C时,两点都停止.设运动时间为t秒.

1)求线段CD的长;

2)当t为何值时,CPQ是直角三角形?

3)是否存在某一时刻,使得PQACD的面积为111?若存在,求出t的值,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.

(1)求出y与x的函数关系式;

(2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?

(3)设该文具店每周销售这种纪念册所获得的利润为w元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?

查看答案和解析>>

同步练习册答案