精英家教网 > 初中数学 > 题目详情

已知:如图,点E、G在平行四边形ABCD的边AD上,EG=ED,延长CE到点F,使得EF=EC.求证:AF∥BG.

证明:连接FG,FD,GC.
∵EG=ED,EF=EC,
∴四边形FGCD是平行四边形(对角线互相平分的四边形是平行四边形),
∴FG∥DC,FG=DC(平行四边形对边相等且平行),
∵平行四边形ABCD,
∴AB∥DC,AB=DC,
∴AB∥FG,AB=FG,
∴四边形ABGF是平行四边形(一组对边平行且相等的四边形是平行四边形),
∴AF∥BG.
分析:连接FG,FD,GC,利用对角线互相平分的四边形是平行四边形判定四边形FGCD是平行四边形,然后根据平行四边形的对边平行且相等可得FG∥DC,FG=DC,又四边形ABCD也是平行四边形,所以AB∥DC,AB=DC,从而得到AB∥FG,AB=FG,然后得到四边形ABGF是平行四边形,根据平行四边形的对边平行即可得证.
点评:本题考查了平行四边形的判定与性质,主要利用了对角线互相平分的四边形是平行四边形,一组对边平行且相等的四边形是平行四边形,平行四边形的对边平行且相等,作出辅助线构造出平行四边形是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、已知:如图,点O为?ABCD的对角线BD的中点,直线EF经过点O,分别交BA、DC的延长线于点E、F,求证:AE=CF.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,点A、B分别在x轴、y轴上,以OA为直径的⊙P交AB于点C(-
2
5
4
5
)
,E为直径精英家教网OA上一动点(与点O、A不重合).EF⊥AB于点F,交y轴于点G.设点E的横坐标为x,△BGF的面积为y.
(1)求直线AB的解析式;
(2)求y与x之间的函数关系式,并写出自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,点A、B、C、D在同一条直线上,EA⊥AD,FD⊥AD,AE=DF,AB=DC.BF,CE相交于点O.
(1)求证:∠ACE=∠DBF;
(2)若点B是AC的中点,∠E=60°,AE=4,求△OBC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,点P是半径为5cm的⊙O外的一点,OP=13cm,PT切⊙O于T,过P点作⊙O的割线PAB,(PB>PA).设PA=x,PB=y,求y关于x的函数解析式,并确定自变量x的取值范围.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•淮阴区模拟)已知:如图,点E、A、C在同一条直线上,AB=CE,AC=CD,BC=ED.求证:AB∥CD.

查看答案和解析>>

同步练习册答案