精英家教网 > 初中数学 > 题目详情

【题目】如图,在ABCD中,∠ABD的平分线BE交AD于点E,∠CDB的平分线DF交BC于点F,连接BD.

(1)求证:△ABE≌△CDF;
(2)若AB=DB,求证:四边形DFBE是矩形.

【答案】
(1)证明:在□ABCD中,AB=CD,∠A=∠C.

∵AB∥CD,

∴∠ABD=∠CDB.

∵BE平分∠ABD,DF平分∠CDB,

∴∠ABE= ∠ABD,∠CDF= ∠CDB.

∴∠ABE=∠CDF.

∵在△ABE和△CDF中,

∴△ABE≌△CDF(ASA)


(2)证明:∵△ABE≌△CDF,

∴AE=CF,

∵四边形ABCD是平行四边形,

∴AD∥BC,AD=BC,

∴DE∥BF,DE=BF,

∴四边形DFBE是平行四边形,

∵AB=DB,BE平分∠ABD,

∴BE⊥AD,即∠DEB=90°.

∴平行四边形DFBE是矩形


【解析】(1)由“BE平分∠ABD,DF平分∠CDB”可得∠ABE=∠CDF,结合平行四边形的性质证出△ABE≌△CDF;(2)要证四边形DFBE是矩形四边形可先证DFBE是平行四边形,再由“AB=DB,BE平分∠ABD”,可得BE⊥AD,即∠DEB=90°,所以平行四边形DFBE是矩形.
【考点精析】掌握平行四边形的性质和矩形的判定方法是解答本题的根本,需要知道平行四边形的对边相等且平行;平行四边形的对角相等,邻角互补;平行四边形的对角线互相平分;有一个角是直角的平行四边形叫做矩形;有三个角是直角的四边形是矩形;两条对角线相等的平行四边形是矩形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,设△ABC和△CDE都是等边三角形,且∠EBD=62°,则∠AEB的度数是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在“绿满重庆”行动中,江北区种植了大量的小叶榕和银杏树,根据林业专家的分析,树叶在进行光合作用后产生的分泌物能在空气中吸附悬浮颗粒,这样就达到了滞尘净化空气的作用.

1)若某小区今年要种植银杏树和小叶榕共450株,且银杏树的数量不超过小叶榕数量的2倍,求今年该小区小叶榕至少种植多少株?

2)已知每一片银杏树叶一年平均滞尘量为,一株银杏树去年有3500片树叶,冬季树叶全部掉落后,今年新长出了树叶,且这株银杏今年的滞尘量是去年滞尘量的11倍还多.已知每片小叶榕树叶的滞尘量比银杏树叶多,一株小叶榕今年的树叶总量比今年的这株银杏要少,明年这株小叶榕树叶将在今年的基础上掉落,但又会新长出1000片树叶,若今明两年这株小叶榕共滞尘量为,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD中,AB2OBC边的中点,点E是正方形内一动点,OE2,连接DE,将线段DE绕点D逆时针旋转90°得DF,连接AECF

1)如图1,求证:AECF

2)如图2,若AEO三点共线,求点F到直线BC的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,己知

(1)判断的位置关系,并说明理由;

(2)平分于点,求的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1是一枚质地均匀的正四面体骰子,它的四个面上分别标有数字0,1,2,3,如图2,正方形ABCD的四个顶点处均有一个圈.课间,李丽和王萍利用它们玩跳圈游戏,玩法如下:游戏者每掷一次骰子,骰子着地一面上的数字是几,就沿正方形ABCD的边顺时针分钟连续跳几个边长.
例如:若从圈A起跳,第一掷得的数字为2,便沿正方形的边顺时针连续跳2个边长,落到圈C,第二次掷得的数字为3,便从圈C开始,沿正方形的边顺时针连续跳3个边长,落到圈B,….
设她们从圈A起跳.
(1)若李丽随机掷这枚骰子一次,求她跳回圈A的概率;
(2)若王萍随机掷这枚骰子两次,请用列表法或画树状图求她最后跳回圈A的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,AB=6,第1次平移将矩形ABCD沿AB的方向向右平移5个单位,得到矩形A1B1C1D1,第2次平移将矩形A1B1C1D1沿A1B1的方向向右平移5个单位,得到矩形A2B2C2D2,第n次平移将矩形An1Bn1Cn1Dn1沿An1Bn1的方向平移5个单位,得到矩形AnBnCnDnn2).

1)求AB1AB2的长.

2)若ABn的长为56,求n

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,ABCD中,EF分别是ABCD上的点,AECFMN分别是DEBF的中点.

1)求证:四边形ENFM是平行四边形.

2)若∠ABC2A,求∠A的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】中,AD的高,,垂足分别为EF

图中有哪些全等的三角形?请一一写出,不需要说明理由

说明全等的理由.

查看答案和解析>>

同步练习册答案