精英家教网 > 初中数学 > 题目详情

【题目】11·湖州)如图,已知抛物线经过点(0,-3),请你确定一个

b的值,使该抛物线与x轴的一个交点在(10)和(30)之间。你确定的b的值是

【答案】(答案不唯一)

【解析】把(0,-3)代入抛物线的解析式求出c的值,在(1,0)和(3,0)之间取一个点,分别把x=1和x=3它的坐标代入解析式即可得出不等式组,求出答案即可.

解:把(0,-3)代入抛物线的解析式得:c=-3,
y=x2+bx-3,
使该抛物线与x轴的一个交点在(1,0)和(3,0)之间,
把x=1代入y=x2+bx-3得:y=1+b-3<0
把x=3代入y=x2+bx-3得:y=9+3b-3>0,
-2<b<2,
即在-2<b<2范围内的任何一个数都符合,
故答案为:在-2<b<2范围内的任何一个数.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】垫球是排球队常规训练的重要项目之一,下列图表中的数据是运动员甲、乙、丙三人每人10次垫球测试的成绩,测试规则为每次连续接球10个,每垫球到位1个记1分,已知运动员甲测试成绩的中位数和众数都是7

运动员甲测试成绩统计表

测试序号

1

2

3

4

5

6

7

8

9

10

成绩(分)

7

6

8

7

6

8

6

8

1)填空:____________

2)要从他们三人中选择一位垫球较为稳定的接球能手,你认为选谁更合适?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,菱形ABCD中,A=60°,点P从A出发,以2cm/s的速度沿边AB、BC、CD匀速运动到D终止,点Q从A与P同时出发,沿边AD匀速运动到D终止,设点P运动的时间为t(s).APQ的面积S(cm2)与t(s)之间函数关系的图象由图2中的曲线段OE与线段EF、FG给出.

(1)求点Q运动的速度;

(2)求图2中线段FG的函数关系式;

(3)问:是否存在这样的t,使PQ将菱形ABCD的面积恰好分成1:5的两部分?若存在,求出这样的t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=CB,∠ABC=90°DAB延长线上一点,点EBC边上,且BE=BD,连结AEDEDC

①求证:△ABE≌△CBD

②若∠CAE=30°,求∠BDC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=-x2+bx+c与x轴交于点A(-1.0)和点B(3,0) ,与y轴交于点C,连接BC交抛物线的对称轴于点E,D是抛物线的顶点.

(1)求此抛物线的解析式

(2)直接写出点C和点D的坐标

(3)若点P在第一象限内的抛物线上,且S△ABP=4S△CDE,求P点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,∠BAD、∠ADC的平分线AEDF分别交BC于点EFAEDF相交于点G.

(1)求证:∠AGD=90°.

(2) 求证:BF=CE.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】用适当的方法解方程

(1)2x2﹣5x﹣3=0

(2)(2x﹣5)2=4(2x﹣5)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=ax2+x+4的对称轴是直线x=3,且与轴相交于A、B两点(B点在A点的右侧),与轴交于C点.

(1)A点的坐标是   ;B点坐标是   

(2)直线BC的解析式是:   

(3)点P是直线BC上方的抛物线上的一动点(不与B、C重合),是否存在点P,使△PBC的面积最大.若存在,请求出△PBC的最大面积,若不存在,试说明理由;

(4)若点Mx轴上,点N在抛物线上,以A、C、M、N为顶点的四边形是平行四边形时,请直接写出点M点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,ABAC,∠A90°BD是∠ABC的平分线,DEBCE,若BC12,则△DEC的周长为_____

查看答案和解析>>

同步练习册答案