精英家教网 > 初中数学 > 题目详情

【题目】用适当的方法解方程

(1)2x2﹣5x﹣3=0

(2)(2x﹣5)2=4(2x﹣5)

【答案】(1)x1=3,x2=-;(2)x1=,x2=

【解析】

(1)方程两边除以2将二次项系数化为1,常数项移到方程右边,然后左右两边都加上一次项系数一半的平方,左边化为完全平方式,右边合并为一个非负常数,开方转化为两个一元一次方程,求出一次方程的解即可得到原方程的解;

(2)根据因式分解法,可得答案.

解:(1)2x2-5x-3=0,

变形得:x2-x=

配方得:x2-x+=+,即(x-2=

开方得:x-

x1=3,x2=-

(2)移项,得

(2x-5)2-4(2x-5)=0

因式分解,得

(2x-5)(2x-9)=0,

于是,得

2x-5=02x-9=0,

解得x1=,x2=

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,五边形ABCDE中有一正三角形ACD,若AB=DE,BC=AE,E=115°,则∠BAE的度数为何?(  )

A. 115 B. 120 C. 125 D. 130

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知双曲线x>0),x>0),点P为双曲线上的一点,且PAx轴于点APBy轴于点BPA、PB分别交双曲线D、C两点,则△PCD的面积为( )

A. 1 B. C. 2 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】11·湖州)如图,已知抛物线经过点(0,-3),请你确定一个

b的值,使该抛物线与x轴的一个交点在(10)和(30)之间。你确定的b的值是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,分别以RtABC的直角边AC及斜边AB向外作等边ACD,等边ABE已知BAC=30°,EFAB,垂足为F,连接DF

(1)试说明AC=EF;

(2)求证:四边形ADFE是平行四边形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】用适当的方法解下列方程:

(1) (2)2x2+3x—1=0(用配方法解)

(3) (4)(x+1)(x+8)=-2

(5) (6)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两名学生在同一小区居住,一天早晨,甲、乙两人同时从家出发去同一所学校上学.甲骑自行车匀速行驶.乙步行到公交站恰好乘上一辆公交车,公交车沿公路匀速行驶,公交车的速度分别是甲骑自行车速度和乙步行速度的2倍和5倍,下车后跑步赶到学校,两人同时到达学校(上、下车时间忽略不计).两人各自距家的路程y(m)与所用的时间x(min)之间的函数图象如图所示.

(1)a= b=

(2)当乙学生乘公交车时,求yx之间的函数关系式(不要求写出自变量x的取值范围).

(3)如果乙学生到学校与甲学生相差1分钟,直接写出他跑步的速度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABC,C = 90°,.DBC上一点,且到A,B两点的距离相等.

(1)用直尺和圆规,作出点D的位置(不写作法,保留作图痕迹);

(2)连结AD,若∠B = 35°,求∠CAD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形网格上有一个DEF

1)画出DEF关于直线HG的轴对称图形(不写画法);

2)画EF边上的高(不写画法);

3)若网格上的最小正方形边长为1,则DEF的面积为   

查看答案和解析>>

同步练习册答案