精英家教网 > 初中数学 > 题目详情

【题目】如图1,点O为直线AB上一点,过点O作射线OC,使∠AOC=60°,将一把直角三角尺的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.

(1)将图1中的三角尺绕点O逆时针旋转至图2,使点NOC的反向延长线上,请直接写出图中∠MOB的度数

(2)将图1中的三角尺绕点O逆时针旋转至图3,使一边OM∠BOC的内部,且恰好平分∠BOC,求∠CON的度数

(3)将图1中的三角尺绕点O顺时针旋转至图4,使ON∠AOC的内部,请探究∠AOM∠NOC之间的数量关系,并说明理由.

【答案】(1)30°;(2)150°;(3)∠AOM﹣∠NOC=30°,理由见解析

【解析】

(1) 根据对顶角求出∠BON,代入∠BOM=MON-BON求出即可;

(2) 求出么BOC=, 根据角平分线定义请求出∠COM=BOM=, 代入∠CON=MON+COM求出即可;

(3)用∠AOM和∠CON表示出∠AON,然后列出方程整理即可得解.

(1)如图2,∵∠AOC=60°,

∴∠BON=∠AOC=60°,

∵∠MON=90°,

∴∠BOM=∠MON﹣∠BON=30°,

(2)∵∠AOC=60°,

∴∠BOC=180°﹣∠AOC=120°,

OM平分∠BOC,

∴∠COM=∠BOM=60°,

∵∠MON=90°,

∴∠CON=∠MON+∠COM=90°+60°=150°;

(3)∠AOM﹣∠NOC=30°,

理由是:∵∠MON=90°,∠AOC=60°,

∴∠AON=90°﹣∠AOM,

∠AON=60°﹣∠NOC,

∴90°﹣∠AOM=60°﹣∠NOC,

∴∠AOM﹣∠NOC=30°,

AOM与NOC之间的数量关系为:∠AOM﹣∠NOC=30°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】下图是某同学在沙滩上用石子摆成的小房子.观察图形的变化规律,第6个小房子用的石子数量为 ( )

A. 87 B. 77 C. 70 D. 60

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,点O为直线AB上一点,过点O作射线OC,使∠BOC=112°.将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.

(1)将图1中的三角板绕点O逆时针旋转至图2,使一边OM在∠BOC的内部,且恰好平分∠BOC,问:直线ON是否平分∠AOC?请说明理由;

(2)将图1中的三角板绕点O按每秒4°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为多少?

(3)将图1中的三角板绕点O顺时针旋转至图3,使ON在∠AOC的内部,请探究:∠AOM与∠NOC之间的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,O为坐标原点,△ABC的边BC在y轴的正半轴上,点A在x轴的正半轴上,点C的坐标为(0,8),将△ABC沿直线AB折叠,点C落在x轴的负半轴D(﹣4,0)处.

(1)求直线AB的解析式;
(2)点P从点A出发以每秒4 个单位长度的速度沿射线AB方向运动,过点P作PQ⊥AB,交x轴于点Q,PR∥AC交x轴于点R,设点P运动时间为t(秒),线段QR长为d,求d与t的函数关系式(不要求写出自变量t的取值范围);

(3)在(2)的条件下,点N是射线AB上一点,以点N为圆心,同时经过R、Q两点作⊙N,⊙N交y轴于点E,F.是否存在t,使得EF=RQ?若存在,求出t的值,并求出圆心N的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校允许学生在同个系列的校服里选择不同款式,新生入学后,学校就新生对校服款式选择情况作了抽样调查,调查分为款式ABCD四种,每位新生只能选择一种款式,现将调查统计结果制成了如下两幅不完整的统计图,请结合这两幅统计图,回答下列问题:

1)在本次调查中,一共抽取了多少名新生,并补全条形统计图;

2)若该校有847名新生,服装厂已生产了270B款式的校服,请你按相关统计知识判断是否还要继续生产B款式的校服?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两人同时从相距25千米的A地去B地,甲骑摩托车,乙骑自行车,甲的速度是乙的速度的3倍,甲到达B地后停留了30分钟,然后从B地返回A地,在途中遇见了乙,此时距他们出发的时间刚好是1小时,则甲的速度是(  )

A. 20千米/小时 B. 60千米/小时

C. 25千米/小时 D. 75千米小时

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙O是△ABC的内切圆,切点为DEF,ADBE的长为方程的两个根,则△ABC的周长为 ______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线y=ax2+3与x轴的两个交点分别为(m,0)和(n,0),则当x=m+n时,y的值为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB两地相距450千米,两地之间有一个加油站O,且AO=270千米,一辆轿车从A地出发,以每小时90千米的速度开往B地,一辆客车从B地出发,以每小时60千米的速度开往A地,两车同时出发,设出发时间为t小时.

(1)经过几小时两车相遇?

(2)当出发2小时时,轿车和客车分别距离加油站O多远?

(3)经过几小时,两车相距50千米?

查看答案和解析>>

同步练习册答案