【题目】如图,在平面直角坐标系中,O为坐标原点,△ABC的边BC在y轴的正半轴上,点A在x轴的正半轴上,点C的坐标为(0,8),将△ABC沿直线AB折叠,点C落在x轴的负半轴D(﹣4,0)处.
(1)求直线AB的解析式;
(2)点P从点A出发以每秒4 个单位长度的速度沿射线AB方向运动,过点P作PQ⊥AB,交x轴于点Q,PR∥AC交x轴于点R,设点P运动时间为t(秒),线段QR长为d,求d与t的函数关系式(不要求写出自变量t的取值范围);
(3)在(2)的条件下,点N是射线AB上一点,以点N为圆心,同时经过R、Q两点作⊙N,⊙N交y轴于点E,F.是否存在t,使得EF=RQ?若存在,求出t的值,并求出圆心N的坐标;若不存在,说明理由.
【答案】
(1)
解:∵C(0,8),D(﹣4,0),
∴OC=8,OD=4,
设OB=a,则BC=8﹣a,
由折叠的性质可得:BD=BC=8﹣a,
在Rt△BOD中,∠BOD=90°,DB2=OB2+OD2,
则(8﹣a)2=a2+42,
解得:a=3,
则OB=3,
则B(0,3),
tan∠ODB= = ,
由折叠的性质得:∠ADB=∠ACB,
则tan∠ACB=tan∠ODB= ,
在Rt△AOC中,∠AOC=90°,tan∠ACB= = ,
则OA=6,
则A(6,0),
设直线AB的解析式为:y=kx+b,
则 ,
解得: ,
故直线AB的解析式为:y=﹣ x+3
(2)
解:在Rt△AOB中,∠AOB=90°,OB=3,OA=6,
则AB= =3 ,tan∠BAO= = ,cos∠BAO= = ,
在Rt△PQA中,∠APQ=90°,AP=4 t,
则AQ= =10t,
∵PR∥AC,
∴∠APR=∠CAB,
由折叠的性质得:∠BAO=∠CAB,
∴∠BAO=∠APR,
∴PR=AR,
∵∠RAP+∠PQA=∠APR+∠QPR=90°,
∴∠PQA=∠QPR,
∴RP=RQ,
∴RQ=AR,
∴QR= AQ=5t,
即d=5t;
(3)
解:过点分别作NT⊥RQ于T,NS⊥EF于S,
∵EF=QR,
∴NS=NT,
∴四边形NTOS是正方形,
则TQ=TR= QR= t,
∴NT= AT= (AQ﹣TQ)= (10t﹣ t)= t,
分两种情况,
若点N在第二象限,则设N(n,﹣n),
点N在直线y=﹣ x+3上,
则﹣n=﹣ n+3,
解得:n=﹣6,
故N(﹣6,6),NT=6,
即 t=6,
解得:t= ;
若点N在第一象限,设N(N,N),
可得:n=﹣ n+3,
解得:n=2,
故N(2,2),NT=2,
即 t=2,
解得:t= .
故当t= 或t= 时,QR=EF,N(﹣6,6)或(2,2).
【解析】(1)由C(0,8),D(﹣4,0),可求得OC,OD的长,然后设OB=a,则BC=8﹣a,在Rt△BOD中,由勾股定理可得方程:(8﹣a)2=a2+42 , 解此方程即可求得B的坐标,然后由三角函数的求得点A的坐标,再利用待定系数法求得直线AB的解析式;(2)在Rt△AOB中,由勾股定理可求得AB的长,继而求得∠BAO的正切与余弦,由PR∥AC与折叠的性质,易证得RQ=AR,则可求得d与t的函数关系式;(3)首先过点分别作NT⊥RQ于T,NS⊥EF于S,易证得四边形NTOS是正方形,然后分别从点N在第二象限与点N在第一象限去分析求解即可求得答案.
科目:初中数学 来源: 题型:
【题目】如图,点A、B都在数轴上,O为原点.
(1)点B表示的数是_________________;
(2)若点B以每秒2个单位长度的速度沿数轴向右运动,则2秒后点B表示的数是________;
(3)若点A、B分别以每秒1个单位长度、3个单位长度的速度沿数轴向右运动,而点O不动,t秒后,A、B、O三个点中有一个点是另外两个点为端点的线段的中点,求t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点O为直线AB上一点,将一直角三角板的直角顶点放在点O处.
(1)如图1,将三角板的一边ON与射线OB重合,过点O在三角板的内部,作射线OC,使∠NOC:∠MOC=2:1,求∠AOC的度数;
(2)如图2,将三角板绕点O逆时针旋转一定角度到图2的位置,过点O在三角板MON的内部作射线OC,使得OC恰好是∠MOB对的角平分线,此时∠AOM与∠NOC满足怎样的数量关系?并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,点O为坐标原点,A、B、C三点的坐标为( ,0)、(3 ,0)、(0,5),点D在第一象限,且∠ADB=60°,则线段CD的长的最小值为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某市今年的信息技术结业考试,采用学生抽签的方式决定自己的考试内容.规定:每位考生先在三个笔试题(题签分别用代码B1、B2、B3表示)中抽取一个,再在三个上机题(题签分别用代码J1、J2、J3表示)中抽取一个进行考试.小亮在看不到题签的情况下,分别从笔试题和上机题中随机地抽取一个题签.
(1)用树状图或列表法表示出所有可能的结果;
(2)求小亮抽到的笔试题和上机题的题签代码的下标(例如“B1”的下标为“1”)为一个奇数一个偶数的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】
(1)写出数轴上A、B两点表示的数;
(2)动点P、Q分别从A、C同时出发,点P以每秒2个单位长度的速度沿数轴向右匀速运动,点Q以每秒1个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒,t为何值时,原点O、与P、Q三点中,有一点恰好是另两点所连线段的中点.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,点O为直线AB上一点,过点O作射线OC,使∠AOC=60°,将一把直角三角尺的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.
(1)将图1中的三角尺绕点O逆时针旋转至图2,使点N在OC的反向延长线上,请直接写出图中∠MOB的度数;
(2)将图1中的三角尺绕点O逆时针旋转至图3,使一边OM在∠BOC的内部,且恰好平分∠BOC,求∠CON的度数;
(3)将图1中的三角尺绕点O顺时针旋转至图4,使ON在∠AOC的内部,请探究∠AOM与∠NOC之间的数量关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知⊙O的半径为4,OA为半径,CD为弦,OA与CD交于点M,将弧CD沿着CD翻折后,点A与圆心O重合,延长OA至P,使AP=OA,连接PC.
(1)求CD的长;
(2)求证:PC是⊙O的切线.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】解下列方程:
(1)2(10﹣0.5y)=﹣(1.5y+2)
(2)(x﹣5)=3﹣(x﹣5)
(3)﹣1=
(4)x﹣(x﹣9)=[x+(x﹣9)]
(5) -=0.5x+2
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com