精英家教网 > 初中数学 > 题目详情

【题目】

1)写出数轴上AB两点表示的数;

2)动点PQ分别从AC同时出发,点P以每秒2个单位长度的速度沿数轴向右匀速运动,点Q以每秒1个单位长度的速度沿数轴向左匀速运动,设运动时间为tt0)秒,t为何值时,原点O、与PQ三点中,有一点恰好是另两点所连线段的中点.

【答案】(1-102;(2t的值为45.25.5.

【解析】试题分析:(1)根据数轴上两点间的距离可得点A、点B所表示的数;

2)一点恰好是另两点所连线段的中点有三种情况:

若点O是点P与点Q的中点时,PQ所表示的数互为相反数,列方程解得;

若点P是点O与点Q的中点时,OQ=2OP,列方程解得;

若点Q是点P与点O的中点时,OP=2OQ.列方程解得.

试题解析:(1C表示的数是6BC=4AB=12,且点A、点B在点C左边,

B表示的数为:6-4=2,点A表示的数为:6-4-12=-10

即数轴上A点表示的数为-10,数轴上B点表示的数为2

2)根据题意,t秒后点P表示的数为:-10+2t,点Q表示的数为:6-t

有以下三种情况:

若点O是点P与点Q的中点,则-10+2t+6-t=0,解得:t=4

若点P是点O与点Q的中点,则6-t=2-10+2t),解得:t=5.2

若点Q是点P与点O的中点,则26-t=-10+2t,解得:t=5.5

综上,当t的值为45.25.5时,原点O、与PQ三点中,有一点恰好是另两点所连线段的中点.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知:如图,四边形ABCD和四边形AECF都是矩形,AE与BC交于点M,CF与AD交于点N.

(1)求证:△ABM≌△CDN;
(2)矩形ABCD和矩形AECF满足何种关系时,四边形AMCN是菱形,证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两家超市进行促销活动,甲超市采用“买100减50”的促销方式,即购买商品的总金额满100元但不足200元,少付50元;满200元但不足300元,少付100元;….乙超市采用“打6折”的促销方式,即顾客购买商品的总金额打6折.
(1)若顾客在甲商场购买商品的总金额为x(100≤x<200)元,优惠后得到商家的优惠率为p(p= ),写出p与x之间的函数关系式,并说明p随x的变化情况;
(2)王强同学认为:如果顾客购买商品的总金额超过100元,实际上甲超市采用“打5折”、乙超市采用“打6折”,那么当然选择甲超市购物.请你举例反驳;
(3)品牌、质量、规格等都相同的某种商品,在甲乙两商场的标价都是x(300≤x<400)元,认为选择哪家商场购买商品花钱较少?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线,交CE的延长线于点F,且AF=BD,连接BF.

(1)求证:BD=CD;(2)如果AB=AC,试判断四边形AFBD的形状,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,O为坐标原点,△ABC的边BC在y轴的正半轴上,点A在x轴的正半轴上,点C的坐标为(0,8),将△ABC沿直线AB折叠,点C落在x轴的负半轴D(﹣4,0)处.

(1)求直线AB的解析式;
(2)点P从点A出发以每秒4 个单位长度的速度沿射线AB方向运动,过点P作PQ⊥AB,交x轴于点Q,PR∥AC交x轴于点R,设点P运动时间为t(秒),线段QR长为d,求d与t的函数关系式(不要求写出自变量t的取值范围);

(3)在(2)的条件下,点N是射线AB上一点,以点N为圆心,同时经过R、Q两点作⊙N,⊙N交y轴于点E,F.是否存在t,使得EF=RQ?若存在,求出t的值,并求出圆心N的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某景区商店以2元的批发价进了一批纪念品.经调查发现,每个定价3元,每天可以能卖出500件,而且定价每上涨0.1元,其销售量将减少10件.根据规定:纪念品售价不能超过批发价的2.5倍.

1)当每个纪念品定价为3.5元时,商店每天能卖出________件;

2)如果商店要实现每天800元的销售利润,那该如何定价?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两人同时从相距25千米的A地去B地,甲骑摩托车,乙骑自行车,甲的速度是乙的速度的3倍,甲到达B地后停留了30分钟,然后从B地返回A地,在途中遇见了乙,此时距他们出发的时间刚好是1小时,则甲的速度是(  )

A. 20千米/小时 B. 60千米/小时

C. 25千米/小时 D. 75千米小时

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=x2+bx+c与x轴交于A(﹣1,0)和B(3,0)两点,与y轴交于点C,对称轴与x轴交于点E,点D为顶点,连接BD、CD、BC.

(1)求证△BCD是直角三角形;
(2)点P为线段BD上一点,若∠PCO+∠CDB=180°,求点P的坐标;
(3)点M为抛物线上一点,作MN⊥CD,交直线CD于点N,若∠CMN=∠BDE,请直接写出所有符合条件的点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,B=90°,AC=60cmA=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤15).过点D作DFBC于点F,连接DE,EF.

(1)求证:AE=DF;

(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值,如果不能,说明理由;

(3)当t为何值时,DEF为直角三角形?请说明理由.

查看答案和解析>>

同步练习册答案