精英家教网 > 初中数学 > 题目详情

【题目】如图1,点O为直线AB上一点,过点O作射线OC,使∠BOC=112°.将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.

(1)将图1中的三角板绕点O逆时针旋转至图2,使一边OM在∠BOC的内部,且恰好平分∠BOC,问:直线ON是否平分∠AOC?请说明理由;

(2)将图1中的三角板绕点O按每秒4°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为多少?

(3)将图1中的三角板绕点O顺时针旋转至图3,使ON在∠AOC的内部,请探究:∠AOM与∠NOC之间的数量关系,并说明理由.

【答案】1)平分;(2)(2t=5914 3AOMNOC=220

【解析】

试题(1)根据角平分线的定义和平角的定义求出∠COP=30°,即可证得直线ON平分∠AOC

2)当ONO点旋转至图位置时,此时ON转过60°,旋转时间为10秒;当ON转至锐角∠AOC内部平分∠AOC时,ON转过90°+150°=240°,旋转时间为40秒;

3)根据∠AOM+∠AON=90°∠AON+∠NOC=60°,得到∠AOM∠NOC =30°.

试题解析:(1)直线ON平分∠AOC(如图),理由如下:

∵OM平分∠BOC,且∠BOC=120°

∴∠COM=60°

∠MON=90°

∴∠POM=90°

∴∠COP=30°

∠AOC=60°

∴OP平分∠AOC

即直线ON平分∠AOC.

2)当ONO点旋转至图位置时,ON平分∠AOC,此时ON转过60°

ON转至锐角∠AOC内部平分∠AOC时,ON转过90°+150°=240°

所以t=1040(秒) ,

答:旋转时间t的值为10秒或40.

3∠AOM—∠NOC=30°

∵∠AOM+∠AON=90°

∠AON+∠NOC=60°

∴∠AOM∠NOC =30°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD ,AB=4,BC=8,点ECD中点,P、QBC边上两个动点,且PQ=2,当四边形APQE周长最小时,BP的长为(

A. 1 B. 2 C. 2 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】列一元一次方程解应用题.

(1)商店出售茶壶和茶杯,茶壶每只定价20元,茶杯每只定价5元,该商品制定了两种优惠方法:

买一只茶壶赠一只茶杯;按总价的90%付款.某顾客购买茶壶5只,茶杯若干只(不少于5只),问顾客买多少只茶杯时,两种方法付款相同.假如该顾客买了茶杯20只,哪种买法实惠?

(2)某人原计划骑车以每小时12千米的速度由A地到B地,这样便可在规定的时间到达,但他因事将原计划出发的时间推迟了20分钟,只好以每小时15千米的速度前进,结果比规定时间早4分钟到达B地,求A,B两地间的距离.

(3)某工厂完成一批产品,一车间单独完成需30天,二车间单独完成需20天.

如一车间先做若干天,然后由二车间继续做,直至完成,前后共做了25天,问一车间先做了几天?

如一车间先做了3天后,二车间加入一起做,还需多少天才能完成?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知点O为直线AB上一点,将一直角三角板的直角顶点放在点O处.

(1)如图1,将三角板的一边ON与射线OB重合,过点O在三角板的内部,作射线OC,使∠NOC:∠MOC=2:1,求∠AOC的度数;

(2)如图2,将三角板绕点O逆时针旋转一定角度到图2的位置,过点O在三角板MON的内部作射线OC,使得OC恰好是∠MOB对的角平分线,此时∠AOM∠NOC满足怎样的数量关系?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列函数的图象在每一个象限内,y值随x值的增大而增大的是(
A.y=﹣x+1
B.y=x2﹣1
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,点O为坐标原点,A、B、C三点的坐标为( ,0)、(3 ,0)、(0,5),点D在第一象限,且∠ADB=60°,则线段CD的长的最小值为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某市今年的信息技术结业考试,采用学生抽签的方式决定自己的考试内容.规定:每位考生先在三个笔试题(题签分别用代码B1、B2、B3表示)中抽取一个,再在三个上机题(题签分别用代码J1、J2、J3表示)中抽取一个进行考试.小亮在看不到题签的情况下,分别从笔试题和上机题中随机地抽取一个题签.
(1)用树状图或列表法表示出所有可能的结果;
(2)求小亮抽到的笔试题和上机题的题签代码的下标(例如“B1”的下标为“1”)为一个奇数一个偶数的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,点O为直线AB上一点,过点O作射线OC,使∠AOC=60°,将一把直角三角尺的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.

(1)将图1中的三角尺绕点O逆时针旋转至图2,使点NOC的反向延长线上,请直接写出图中∠MOB的度数

(2)将图1中的三角尺绕点O逆时针旋转至图3,使一边OM∠BOC的内部,且恰好平分∠BOC,求∠CON的度数

(3)将图1中的三角尺绕点O顺时针旋转至图4,使ON∠AOC的内部,请探究∠AOM∠NOC之间的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,弦CD⊥AB于点E,且CD=24,点M在⊙O上,MD经过圆心O,联结MB.
(1)若BE=8,求⊙O的半径;
(2)若∠DMB=∠D,求线段OE的长.

查看答案和解析>>

同步练习册答案