精英家教网 > 初中数学 > 题目详情

【题目】如图,AB是⊙O的直径,弦CD⊥AB于点E,且CD=24,点M在⊙O上,MD经过圆心O,联结MB.
(1)若BE=8,求⊙O的半径;
(2)若∠DMB=∠D,求线段OE的长.

【答案】
(1)解:设⊙O的半径为x,则OE=x﹣8,

∵CD=24,由垂径定理得,DE=12,

在Rt△ODE中,OD2=DE2+OE2

x2=(x﹣8)2+122

解得:x=13


(2)解:∵OM=OB,

∴∠M=∠B,

∴∠DOE=2∠M,

又∠M=∠D,

∴∠D=30°,

在Rt△OED中,∵DE=12,∠D=30°,

∴OE=4


【解析】(1)根据垂径定理求出DE的长,设出半径,根据勾股定理,列出方程求出半径;(2)根据OM=OB,证出∠M=∠B,根据∠M=∠D,求出∠D的度数,根据锐角三角函数求出OE的长.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1,点O为直线AB上一点,过点O作射线OC,使∠BOC=112°.将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.

(1)将图1中的三角板绕点O逆时针旋转至图2,使一边OM在∠BOC的内部,且恰好平分∠BOC,问:直线ON是否平分∠AOC?请说明理由;

(2)将图1中的三角板绕点O按每秒4°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为多少?

(3)将图1中的三角板绕点O顺时针旋转至图3,使ON在∠AOC的内部,请探究:∠AOM与∠NOC之间的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙O是△ABC的内切圆,切点为DEF,ADBE的长为方程的两个根,则△ABC的周长为 ______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线y=ax2+3与x轴的两个交点分别为(m,0)和(n,0),则当x=m+n时,y的值为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知∠EOC=110°,将角的一边OE绕点O旋转,使终止位置OD和起始位置OE成一条直线,以点O为中心将OC顺时针旋转到OA,使∠COA=DOC,过点O作∠COA的平分线OB.

(1)借助量角器、直尺补全图形;

(2)求∠BOE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,OC是∠AOB内的一条射线,OD、OE分别平分∠AOB、AOC.

(1)若∠AOC=20°,AOB=110°,则∠BOC=   °,DOE=   °;

(2)若∠AOC=m°,AOB=n°(n>m),则∠BOC=   °,DOE=   °;

(3)猜想:∠DOE与∠BOC有怎样的数量关系?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在春运期间,宁波火车站加大了安检力度,原来在北广场执勤的有10人,在南广场执勤的有6人,现调50人去支援.设调往北广场x人.

(1)则南广场增援后有执勤多少人(用含x的代数式表示).

(2)若要使在北广场执勤人数是在南广场执勤人数的2倍,问应调往北广场、南广场两处各多少人?

(3)通过适当的调配支援人数,使在北广场执勤人数恰好是在南广场执勤人数的n(n是大于1的正整数,不包括1).求符合条件的n的值

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB两地相距450千米,两地之间有一个加油站O,且AO=270千米,一辆轿车从A地出发,以每小时90千米的速度开往B地,一辆客车从B地出发,以每小时60千米的速度开往A地,两车同时出发,设出发时间为t小时.

(1)经过几小时两车相遇?

(2)当出发2小时时,轿车和客车分别距离加油站O多远?

(3)经过几小时,两车相距50千米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中(AD>AB),点EBC上一点,且DE=DA,AF⊥DE,垂足为点F,在下列结论中,不一定正确的是(  )

A. △AFD≌△DCE B. AF=AD C. AB=AF D. BE=AD﹣DF

查看答案和解析>>

同步练习册答案