【题目】我们规定:如果一个三角形有一边上的中线等于这条边的一半,那么称这个三角形为“智慧三角形”.
理解:
(1)如图1,已知A、B是⊙O上两点,请在圆上找出满足条件的点C,使△ABC为“智慧三角形”(画出点C的位置,保留作图痕迹);
(2)如图3,在平面直角坐标系xOy中,⊙O的半径为1,点Q是直线y=3上的一点,若在⊙O上存在一点P,使得△OPQ为“智慧三角形”,当其面积取得最小值时,直接写出此时PQ的长和点Q的坐标
【答案】(1)见解析;(2),Q(0,3)
【解析】
(1)连结BO并且延长交圆于C1,连结AO并且延长交圆于C2,即可求解;
(2)根据“智慧三角形”的定义可得△OPQ为直角三角形,根据题意可得一条直角边为1,当斜边最短时,另一条直角边最短,则面积取得最小值,由垂线段最短可得斜边最短为3,从而得到点Q坐标,再根据勾股定理可求另一条直角边即PQ长.
解:(1)如图所示,过直径做△ABC即可;
(2)如图所示:
由“智慧三角形”的定义可得△OPQ为直角三角形,
根据题意可得一条直角边OP=1,
∴PQ最小时,△POQ的面积最小,
根据勾股定理可知,当斜边OQ最短时,PQ最小,面积取得最小值,
由垂线段最短可得斜边最短为3,即OQ=3,
∴Q(0,3),
由勾股定理可得PQ==,
∴当面积取得最小值时,点Q的坐标为(0,3),PQ的长为.
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的边长是6,点E、F分别是边AD、AB的点,AP⊥BE于点P.
(1)如图①,当AE=2且AF=BF时,若点T是射线PF上的一个动点(点T不与点P重合),当△ABT是直角三角形时,求AT的长.
(2)如图②,当AE=AF时,连结CP,判断CP与PF的位置关系,并加以证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是二次函数y=ax2+bx+c(a≠0)的图象与x轴的相交情况,关于下列结论:
①方程ax2+bx=0的两个根为x1=0,x2=﹣4;②b﹣4a=0;③9a+3b+c<0;其中正确的结论有( )
A. 0个B. 1个C. 2个D. 3个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=﹣2x+3与x轴交于点C,与y轴交于点B,抛物线y=ax2+x+c经过B、C两点.
(1)求抛物线的解析式;
(2)如图,点E是直线BC上方抛物线上的一动点,当△BEC面积最大时,请求出点E的坐标和△BEC面积的最大值?
(3)在(2)的结论下,过点E作y轴的平行线交直线BC于点M,连接AM,点Q是抛物线对称轴上的动点,在抛物线上是否存在点P,使得以P、Q、A、M为顶点的四边形是平行四边形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如果把函数y=x2(x≤2)的图象和函数y=的图象组成一个图象,并称作图象E,那么直线y=3与图象E的交点有_____个;若直线y=m(m为常数)与图象E有三个不同的交点,则常数m的取值范围是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=3x2+bx+c与直线y=﹣1只有一个公共点M,与平行于x轴的直线l交此抛物线A,B两点若AB=4,则点M到直线l的距离为( )
A.11B.12C.D.13
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=mx2+2mx+m-1和直线y=mx+m-1,且m≠0.
(1)求抛物线的顶点坐标;
(2)试说明抛物线与直线有两个交点;
(3)已知点T(t,0),且-1≤t≤1,过点T作x轴的垂线,与抛物线交于点P,与直线交于点Q,当0<m≤3时,求线段PQ长的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx+c(a≠0)过点(3,0),且对称轴为直线x=1.下列说法,其中正确的是( )
①abc<0
②b2﹣4ac>0;
③a﹣b+c<0;
④b﹣c>2a
A.①②B.①③④C.②④D.①②④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC为等腰直角三角形,∠B=90°,AB=2,把△ABC绕点A逆时针旋转60°得到△AB1C1,连接CB1,则点B1到直线AC的距离为_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com