【题目】如图,正方形ABCD的边长是6,点E、F分别是边AD、AB的点,AP⊥BE于点P.
(1)如图①,当AE=2且AF=BF时,若点T是射线PF上的一个动点(点T不与点P重合),当△ABT是直角三角形时,求AT的长.
(2)如图②,当AE=AF时,连结CP,判断CP与PF的位置关系,并加以证明.
【答案】(1)AT=3或3;(2)CP⊥PF,证明见解析.
【解析】
(1)解Rt△BAE,求出∠ABE=30°,然后分三种情况进行讨论:①当点T在AB的上方,∠ATB=90°时,点T和点P重合,不符合题意;②当点T在AB的下方,∠ATB=90°时,根据直角三角形斜边上的中线等于斜边的一半可得TF=BF=AF=3,而∠BFT=60°,那么△FTB是等边三角形,TB=3,再根据勾股定理求出AT; ③当点T在AB的下方,∠ABT=90°时,解直角三角形求出BT,然后在Rt△ATB中利用勾股定理求出AT;
(2)先证明∠1=∠3=∠4,由tan∠1=,tan∠3=,得出,等量代换得到,然后可证明△PBC∽△PAF,得出∠5=∠6,进而可得∠5+∠7=90°,即∠CPF=90°,那么CP⊥PF.
解:(1)在正方形ABCD中,可得∠DAB=90°,
∵在Rt△BAE中,tan∠ABE=,
∴∠ABE=30°,
点T是射线PF上的一个动点,当△ABT为直角三角形时,分三种情况:
①当点T在AB的上方,∠ATB=90°,
此时点T和点P重合,与题意不符;
②当点T在AB的下方,∠ATB=90°,
如图所示,在Rt△APB中,由AF=BF,可得:AF=BF=PF=3,
∴∠BPF=∠FBP=30°,
∴∠BFT=60°,
在Rt△ATB中,TF=BF=AF=3,
∴△FTB是等边三角形,
∴TB=3,AT=;
③当点T在AB的下方,∠ABT=90°时,
如图所示,在Rt△FBT中,∠BFT=60°,BF=3,BT=BFtan60°=,
在Rt△ATB中:AT=,
综上所述:当△ABT为直角三角形时,AT的长为或;
(2)CP⊥PF,
证明:如图所示,∵四边形ABCD是正方形,
∴AB=AD=BC,AD∥BC,∠DAB=90°,
∴∠3=∠4,
∵在Rt△EAB中,AP⊥BE,
∴∠1+∠2=90°,∠3+∠2=90°,
∴∠1=∠3,
∴∠1=∠3=∠4,
∵tan∠1=,tan∠3=,
∴,
∵AE=AF,AB=BC,
∴,
∴△PBC∽△PAF,
∴∠5=∠6.
∵∠6+∠7=90°,
∴∠5+∠7=90°,即∠CPF=90°,
∴CP⊥PF.
科目:初中数学 来源: 题型:
【题目】在一次数学综合实践活动中,小明计划测量城门大楼的高度,在点B处测得楼顶A的仰角为22°,他正对着城楼前进21米到达C处,再登上3米高的楼台D处,并测得此时楼顶A的仰角为45°.
(1)求城门大楼的高度;
(2)每逢重大节日,城门大楼管理处都要在A,B之间拉上绳子,并在绳子上挂一些彩旗,请你求出A,B之间所挂彩旗的长度(结果保留整数).(参考数据:sin22°≈,cos22°≈,tan22°≈)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知函数y=ax2+bx+c(a≠0)的图象如图,下列5个结论,其中正确的结论有( )
①abc<0
②3a+c>0
③4a+2b+c<0
④2a+b=0
⑤b2>4ac
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在平面直角坐标系xOy中,有AB为斜边的等腰直角三角形ABC,其中点A(0,2),点C(﹣1,0),抛物线y=ax2+ax﹣2经过B点.
(1)求B点的坐标;
(2)求抛物线的解析式;
(3)在抛物线上是否存在点N(点B除外),使得△ACN仍然是以AC为直角边的等腰直角三角形?若存在,求点N的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的一元二次方程x2+(2k+1)x+k2=0①有两个不相等的实数根.
(1)求k的取值范围;
(2)设方程①的两个实数根分别为x1,x2,当k=1时,求x12+x22的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某厂大门是抛物线形水泥建筑,大门地面路宽为6,顶部距离地面的高度为4,现有一辆装载大型设备的车辆要进入厂区,已知设备总宽为2.4,要想通过此门,则设备及车辆总高度应小于______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们规定:如果一个三角形有一边上的中线等于这条边的一半,那么称这个三角形为“智慧三角形”.
理解:
(1)如图1,已知A、B是⊙O上两点,请在圆上找出满足条件的点C,使△ABC为“智慧三角形”(画出点C的位置,保留作图痕迹);
(2)如图3,在平面直角坐标系xOy中,⊙O的半径为1,点Q是直线y=3上的一点,若在⊙O上存在一点P,使得△OPQ为“智慧三角形”,当其面积取得最小值时,直接写出此时PQ的长和点Q的坐标
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com