【题目】平面上5个圆最多能把平面分成多少个部分?一般地,n个圆最多能把平面分成多少个部分?
【答案】5个圆最多将平面分成22个部分,n个圆最多分平面为n2﹣n+2.
【解析】
根据题意,探索出圆的个数与分成的平面个数的关系,从而得出结论.
1个圆最多能把平面分成2个部分,
2个圆最多能把平面分成4个部分;
3个圆最多能把平面分成8个部分;
现在加入第4个圆,为了使分成的部分最多,第4个圆必须与前面3个圆都有两个交点,
如图所示,因此得6个交点将第4个圆的圆周分成6段圆弧,而每一段圆弧将原来的部分一分为二,即增加了一个部分,于是4个圆最多将平面分成8+6=14个部分,
同理,5个圆最多将平面分成14+8=22个部分,
一般地,n个圆最多分平面为:
2+1×2+2×2+…+(n﹣1)×2,
=2+2[1+2+…+(n﹣1)],
=n2﹣n+2.
科目:初中数学 来源: 题型:
【题目】有一个抛物线型蔬菜大棚,将其截面放在如图所示的平面直角坐标系中,抛物线可以用函数y=ax2+bx来表示,已知OA=8米,距离O点2米处的棚高BC为米.
(1)求该抛物线的解析式;
(2)若借助横梁DE(DE∥OA)建一个门,要求门的高度为1.5米,求横梁DE的长度是多少米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在矩形ABCD中,P是AD的中点,连BP,过A作BP的垂线,垂足为F,交BD于E,交CD于G.
(1)若矩形ABCD是正方形,如图1,
①求证:AG=BP.
②的值为 .
(2)类比:如图2,在矩形ABCD中,若2AB=3AD,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(问题背景)先阅读理解下面的例题,再按要求解答下列问题:
例题:解一元二次不等式x2﹣4>0
(问题解决)∵x2﹣4=(x+2)(x﹣2)
∴x2﹣4>0可化为(x+2)(x﹣2)>0
由有理数的乘法法则“两数相乘,同号得正”,得
解不等式组①,得x>2,
解不等式组②,得x<﹣2,
∴(x+2)(x﹣2)>0的解集为x>2或x<﹣2,
即一元二次不等式 x2﹣4>0 的解集为x>2或x<﹣2.
(问题应用)(1)一元二次不等式 x2﹣16>0 的解集为 ;
(2)分式不等式>0 的解集为 ;
(3)(拓展应用)解一元二次不等式 2x2﹣3x<0.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的边长是6,点E、F分别是边AD、AB的点,AP⊥BE于点P.
(1)如图①,当AE=2且AF=BF时,若点T是射线PF上的一个动点(点T不与点P重合),当△ABT是直角三角形时,求AT的长.
(2)如图②,当AE=AF时,连结CP,判断CP与PF的位置关系,并加以证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛一枚均匀硬币正面朝上的概率为,下列说法错误的是
A. 连续抛一枚均匀硬币2次必有1次正面朝上
B. 连续抛一枚均匀硬币10次都可能正面朝上
C. 大量反复抛一枚均匀硬币,平均每100次出现正面朝上50次
D. 通过抛一枚均匀硬币确定谁先发球的比赛规则是公平的
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】矩形ABCD与CEFG,如图放置,点B,C,E共线,点C,D,G共线,连接AF,取AF的中点H,连接GH.若BC=EF=2,CD=CE=1,则GH=( )
A. 1 B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个不透明的盒子中,装有2个白球和1个红球,这些球除颜色外其余都相同.
(1)你同意下列说法吗?请说明理由.
①搅匀后从中任意摸出一个球,不是白球就是红球,因此摸出白球和摸出红球这两个事件是等可能的.
②如果将摸出的第一个球放回搅匀后再摸出第二个球,两次摸球就可能出现3种结果,即“都是红球”、“都是白球”、“一红一白”.这三个事件发生的概率相等.
(2)搅匀后从中任意摸出一个球,要使摸出红球的概率为,应如何添加红球?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=3x2+bx+c与直线y=﹣1只有一个公共点M,与平行于x轴的直线l交此抛物线A,B两点若AB=4,则点M到直线l的距离为( )
A.11B.12C.D.13
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com