【题目】某厂大门是抛物线形水泥建筑,大门地面路宽为6,顶部距离地面的高度为4,现有一辆装载大型设备的车辆要进入厂区,已知设备总宽为2.4,要想通过此门,则设备及车辆总高度应小于______.
科目:初中数学 来源: 题型:
【题目】有一块形状如图的五边形余料,,,,,.要在这块余料中截取一块矩形材料,其中一边在上,并使所截矩形的面积尽可能大.
(1)若所截矩形材料的一条边是或,求矩形材料的面积;
(2)能否截出比(1)中面积更大的矩形材料?如果能,求出这些矩形材料面积的最大值,如果不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的边长是6,点E、F分别是边AD、AB的点,AP⊥BE于点P.
(1)如图①,当AE=2且AF=BF时,若点T是射线PF上的一个动点(点T不与点P重合),当△ABT是直角三角形时,求AT的长.
(2)如图②,当AE=AF时,连结CP,判断CP与PF的位置关系,并加以证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】矩形ABCD与CEFG,如图放置,点B,C,E共线,点C,D,G共线,连接AF,取AF的中点H,连接GH.若BC=EF=2,CD=CE=1,则GH=( )
A. 1 B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,二次函数的图象与x轴交于A(-3,0),B(1,0)两点,与y轴交于点C.
(1)求这个二次函数的关系解析式;
(2)点P是直线AC上方的抛物线上一动点,是否存在点P,使△ACP的面积最大?若存在,求出点P的坐标;若不存在,说明理由;
考生注意:下面的(3)、(4)、(5)题为三选一的选做题,即只能选做其中一个题目,多答时只按作答的首题评分,切记啊!
(3)在平面直角坐标系中,是否存在点Q,使△BCQ是以BC为腰的等腰直角三角形?若存在,直接写出点Q的坐标;若不存在,说明理由;
(4)点Q是直线AC上方的抛物线上一动点,过点Q作QE垂直于x轴,垂足为E.是否存在点Q,使以点B、Q、E为顶点的三角形与△AOC相似?若存在,直接写出点Q的坐标;若不存在,说明理由;
(5)点M为抛物线上一动点,在x轴上是否存在点Q,使以A、C、M、Q为顶点的四边形是平行四边形?若存在,直接写出点Q的坐标;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个不透明的盒子中,装有2个白球和1个红球,这些球除颜色外其余都相同.
(1)你同意下列说法吗?请说明理由.
①搅匀后从中任意摸出一个球,不是白球就是红球,因此摸出白球和摸出红球这两个事件是等可能的.
②如果将摸出的第一个球放回搅匀后再摸出第二个球,两次摸球就可能出现3种结果,即“都是红球”、“都是白球”、“一红一白”.这三个事件发生的概率相等.
(2)搅匀后从中任意摸出一个球,要使摸出红球的概率为,应如何添加红球?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是二次函数y=ax2+bx+c(a≠0)的图象与x轴的相交情况,关于下列结论:
①方程ax2+bx=0的两个根为x1=0,x2=﹣4;②b﹣4a=0;③9a+3b+c<0;其中正确的结论有( )
A. 0个B. 1个C. 2个D. 3个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=﹣2x+3与x轴交于点C,与y轴交于点B,抛物线y=ax2+x+c经过B、C两点.
(1)求抛物线的解析式;
(2)如图,点E是直线BC上方抛物线上的一动点,当△BEC面积最大时,请求出点E的坐标和△BEC面积的最大值?
(3)在(2)的结论下,过点E作y轴的平行线交直线BC于点M,连接AM,点Q是抛物线对称轴上的动点,在抛物线上是否存在点P,使得以P、Q、A、M为顶点的四边形是平行四边形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx+c(a≠0)过点(3,0),且对称轴为直线x=1.下列说法,其中正确的是( )
①abc<0
②b2﹣4ac>0;
③a﹣b+c<0;
④b﹣c>2a
A.①②B.①③④C.②④D.①②④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com