【题目】如图,BD是⊙O的直径,弦BC与OA相交于点E,AF与⊙O相切于点A,交DB的延长线于点F,∠F=30°,∠BAC=120°,BC=8.
(1)求∠ADB的度数;
(2)求AC的长度.
【答案】(1)30°;(2)
【解析】
(1)根据切线的性质可得:AF⊥OA,结合已知条件和三角形内角和定理即可求出∠BOA,根据圆周角定理即可求出∠ADB;
(2)根据直径所对的圆周角是直角可得:∠BAD=90°,从而求出∠DBC=∠DAC=30°,根据平行线的判定及性质可得:OA⊥BC,然后根据垂径定理可得:BE=CE=BC=4,再根据垂直平分线的性质可得:AB=AC,利用等边三角形的判定证出:△AOB是等边三角形,可得:OB=AB=AC,然后根据锐角三角函数可求出BE,从而求出AC.
解:(1)∵AF与⊙O相切于点A,
∴AF⊥OA,
∴∠OAF=90°
∵∠F=30°
∴∠BOA=180°﹣∠OAF﹣∠F=60°,
∴∠ADB=∠AOB=30°;
(2)∵BD是直径
∴∠BAD=90°
∵∠BAC=120°
∴∠DAC=∠BAC-∠BAD=30°
∴∠DBC=∠DAC=30°
∵∠F=30°
∴BC∥FA
∴OA⊥BC,
∴BE=CE=BC=4,
∴AB=AC,
∵∠AOB=60°,OA=OB,
∴△AOB是等边三角形,
∴AB=OB,
∵∠OBE=30°,
∴OB==,
∴AC=AB=OB=.
科目:初中数学 来源: 题型:
【题目】中国青少年发展基金会为某地“希望小学”捐赠物资,其中文具和食品共320件,文具比食品多80件.
(1)求文具和食品各多少件;
(2)现计划租用甲、乙两种货车共8辆,一次性将这批文具和食品全部运往该地.已知甲种货车最多可装文具40件和食品10件,乙种货车最多可装文具和食品各20件.则中国青少年发展基金会安排甲、乙两种货车时有几种方案?请你帮助设计出来.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某经销商销售一种产品,这种产品的成本价为10元/千克,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于18元/千克,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)之间的函数关系如图所示:
(1)求y与x之间的函数关系式,并写出自变量x的取值范围;
(2)求每天的销售利润W(元)与销售价x(元/千克)之间的函数关系式.当销售价为多少时,每天的销售利润最大?最大利润是多少?
(3)该经销商想要每天获得150元的销售利润,销售价应定为多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义[a,b,c]为函数y=ax2+bx+c的特征数,下面给出特征数为[2m,1﹣m,﹣1﹣m]的函数的一些结论,其中不正确的是( )
A. 当m=﹣3时,函数图象的顶点坐标是(,)
B. 当m>0时,函数图象截x轴所得的线段长度大于
C. 当m≠0时,函数图象经过同一个点
D. 当m<0时,函数在x>时,y随x的增大而减小
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,∠ACB=90°,⊙O为△ABC的内切圆,切点分别为D、E、F,若AD=10,BC=5,则OB的长为( )
A.4B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=x2+bx的图象过点A(4,0),设点C(1,-3),在抛物线的对称轴上求一点P,使|PA-PC|的值最大,则点P的坐标为____________。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】关于x的方程ax2+(a+2)x+9a=0有两个不等的实数根x1,x2,且x1<1<x2,那么a的取值范围是( )
A.﹣<a<B.a>C.a<﹣D.﹣<a<0
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(-3,0),对称轴为直线x=-1,给出四个结论:①b2>4ac;②2a+b=0;③a+b+c>0;④若点B(-,y1),C(-,y2)为函数图象上的两点,则y1<y2.其中正确结论是___________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=k1x+b的图象经过A(0,﹣2),B(﹣1,0)两点,与反比例函数与反比例函数y=的图象在第一象限内的交点为M(m,4).
(1)求一次函数和反比例函数的表达式;
(2)求△AOM的面积;
(3)在x轴上是否存在点P,使AM⊥MP?若存在,求出点P的坐标;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com