【题目】已知:如图,△ABC和△DEC都是等边三角形,D是BC延长线上一点,AD与BE相交于点P,AC、BE相交于点M,AD,CE相交于点N,则下列五个结论:①AD=BE;②AP=BM;③∠APM=60°;④△CMN是等边三角形;⑤连接CP,则CP平分∠BPD,其中,正确的是_____.(填写序号)
【答案】①③④⑤.
【解析】
①根据△ACD≌△BCE(SAS)即可证明AD=BE;②根据△ACN≌△BCM(ASA)即可证明AN=BM,从而判断AP≠BM;③根据∠CBE+∠CDA=60°即可求出∠APM=60°;④根据△ACN≌△BCM及∠MCN=60°可知△CMN为等边三角形;⑤根据角平分线的性质可知.
①∵△ABC和△CDE都是等边三角形
∴CA=CB,CD=CE,∠ACB=60°,∠DCE=60°
∴∠ACE=60°
∴∠ACD=∠BCE=120°
在△ACD和△BCE中
∴△ACD≌△BCE(SAS)
∴AD=BE;
②∵△ACD≌△BCE
∴∠CAD=∠CBE
在△ACN和△BCM中
∴△ACN≌△BCM(ASA)
∴AN=BM;
③∵∠CAD+∠CDA=60°
而∠CAD=∠CBE
∴∠CBE+∠CDA=60°
∴∠BPD=120°
∴∠APM=60°;
④∵△ACN≌△BCM
∴CN=BM
而∠MCN=60°
∴△CMN为等边三角形;
⑤过C点作CH⊥BE于H,CQ⊥AD于Q,如图
∵△ACD≌△BCE
∴CQ=CH
∴CP平分∠BPD.
故答案为:①③④⑤.
科目:初中数学 来源: 题型:
【题目】如图,CA⊥AB,垂足为点A,AB=10,AC=5,射线BM⊥AB,垂足为点B,一动点E从A点出发以2厘米秒的速度沿射线AN包括点A)运动,点D为射线BM上一动点,随着E点运动而运动,且始终保持ED=CB,当点E运动_____秒时,△DEB与△BCA全等.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠B=90°,∠A=30°,AC=2.将△ABC绕点C顺时针旋转120°得△A′B′C.
(1)求作:△A′B′C;
(2)求点B旋转经过的路径长;
(3)求线段BB′的长;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=-x2+2mx-m2+的顶点为P.
(1)求证:不论m取何值,点P始终在同一个反比例函数图象上?
(2)若抛物线与x轴交于A、B两点,当m为何值时,线段AB长等于8?
(3)该抛物线上是否存在一点Q,使得△OPQ是以点P为顶点的等腰直角三角形?若不存在,请说明理由;若存在,请求出m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠BAC=90°,AC=2AB,点D是AC的中点.将一块锐角为45°的直角三角板如图放置,使三角板斜边的两个端点分别与A、D重合,连接BE、EC.
试猜想线段BE和EC的数量及位置关系,并证明你的猜想.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,AC=BC,∠ACB=90°,点D为边AB上一点,CD绕点D顺时针旋转90°至DE,CE交AB于点G.已知AD=8,BG=6,点F是AE的中点,连接DF,求线段DF的长___.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ACB=90°,∠ABC=60°,AB=6cm,将△ABC以点B为中心顺时针旋转,使点C旋转到AB边延长线上的点D处,则AC边扫过的图形(阴影部分)的面积是_____cm2.(结果保留π).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一块长方体木块的各棱长如图所示,一只蜘蛛在木块的一个顶点A处,一只苍蝇在这个长方体上和蜘蛛相对的顶点B处,蜘蛛急于捉住苍蝇,沿着长方体的表面向上爬.
(1)如果D是棱的中点,蜘蛛沿“AD→DB”路线爬行,它从A点爬到B点所走的路程为多少?
(2)你认为“AD→DB”是最短路线吗?如果你认为不是,请计算出最短的路程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com