【题目】一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为x(h),两车之间的距离为y(km).图中的折线表示y与x之间的函数关系.根据图象进行以下探究:
(1)甲、乙两地之间的距离为_________km;
(2)求慢车和快车的速度;
(3)请解释图中点C的实际意义;
(4)分别写出线段AB、BC所表示的y与x之间的函数关系式;
【答案】(1)900;(2)慢车75km/h,快车150km/h;(3)C表示快车到达乙地以及此时两车之间的距离;(4)线段BC所表示的y与x之间的函数关系式为y=225x-900(4≤x≤6)
线段AB所表示的y与x之间的函数关系式为y=-225x+900(0≤x≤4).
【解析】
(1)根据图上的信息即可得到甲、乙两地之间的距离;
(2)利用速度和路程之间的关系列式求解即可;
(3)C点时两车间的速度变化减慢,说明快车已到达乙地,此时两车之间的距离;
(4)分别根据题意得出点C的坐标为(6,450),再结合B(4,0),利用待定系数法求解即可;
解:(1)由图像直接可得:甲、乙两地之间的距离900km;
(2)由图象可知,慢车12h行驶的路程为900km,
所以慢车的速度为 =75(km/h);
当慢车行驶4h时,慢车和快车相遇,两车行驶的路程之和为900km,
所以慢车和快车行驶的速度之和为=225(km/h),所以快车的速度为225-75=150(km/h).
(3)C表示快车到达乙地以及此时两车之间的距离;
(4)根据(2)得快车的速度为150km/h,快车行驶900km到达乙地,所以快车行驶=6(h)到达乙地,此时两车之间的距离为900-6×75=450(km)
所以点C的坐标为(6,450).
设线段BC所表示的y与x之间的函数关系式为y=kx+b,
将(4,0),(6,450)代入得
解得k=225,b=-900
所以,线段BC所表示的y与x之间的函数关系式为y=225x-900(4≤x≤6);
同理设y=kx+b,将A(0,900),B(4,0)代入可求得:
线段AB所表示的y与x之间的函数关系式为y=-225x+900(0≤x≤4).
科目:初中数学 来源: 题型:
【题目】如图,有一个可以自由转动的转盘被平均分成3个扇形,分别标有1、2、3三个数字,小王和小李各转动一次转盘为一次游戏,当每次转盘停止后,指针所指扇形内的数为各自所得的数,一次游戏结束得到一组数(若指针指在分界线时重转).
(1)请你用树状图或列表的方法表示出每次游戏可能出现的所有结果;
(2)求每次游戏结束得到的一组数恰好是方程x2﹣3x+2=0的解的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形 ABCD 的对角线 AC 与 BD 相交于点 O,CE∥BD, DE∥AC , AD=2, DE=2,则四边形 OCED 的面积为( )
A. 2 B. 4 C. 4 D. 8
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】请阅读下列材料:
问题:如图,在正方形和平行四边形中,点,,在同一条直线上,是线段的中点,连接,.
探究:当与的夹角为多少度时,平行四边形是正方形?
小聪同学的思路是:首先可以说明四边形是矩形;然后延长交于点,构造全等三角形,经过推理可以探索出问题的答案.
请你参考小聪同学的思路,探究并解决这个问题.
(1)求证:四边形是矩形;
(2)与的夹角为________度时,四边形是正方形.
理由:
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两车同时分别从 A,B 两处出发,沿直线 AB 作匀速运动,同时到达C 处,B 在 AC 上,甲的速度是乙的速度的1.5 倍,设 t(分)后甲、 乙两遥控车与 B 处的距离分别为 d1,d2,且 d1,d2 与出发时间 t 的函数关系如图,那么在两车相遇前,两车与 B 点的距离相等时,t 的值为( )
A.0.4B.0.5C.0.6D.1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】本学期初,某校为迎接中华人民共和国建国七十周年,开展了以“不忘初心,缅怀革命先烈,奋斗新时代”为主题的读书活动。校德育处对本校七年级学生四月份“阅读该主题相关书籍的读书量”(下面简称:“读书量”)进行了随机抽样调查,并对所有随机抽取学生的“读书量”(单位:本)进行了统计,如下图所示:
根据以上信息,解答下列问题:
(1)补全上面两幅统计图,填出本次所抽取学生四月份“读书量”的众数为 ;
(2)求本次所抽取学生四月份“读书量”的平均数;
(3)已知该校七年级有1200名学生,请你估计该校七年级学生中,四月份“读书量”为5本的学生人数。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=﹣2x+4与x轴,y轴分别交于A,B,以线段AB为直角边在第一象限内作Rr△ABC,使AB=AC.
(1)点A的坐标是 ,点B的坐标是 ;
(2)求直线AC的函数关系式;
(3)若P(m,3)在第二象限内,求当△PAB与△ABC面积相等时m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】设函数(为常数),下列说法正确的是( ).
A. 对任意实数,函数与轴都没有交点
B. 存在实数,满足当时,函数的值都随的增大而减小
C. 取不同的值时,二次函数的顶点始终在同一条直线上
D. 对任意实数,抛物线都必定经过唯一定点
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com