精英家教网 > 初中数学 > 题目详情

【题目】如图,在正方形ABCD外取一点E,连接AE、BE、DE.过点A作AE的垂线交DE于点P.若AE=AP=1,PB=,下列结论:① △APD≌△AEB;② EB⊥ED;③ 点B到直线AE的距离为; ④,其中正确结论的序号是( )

A. ①②③ B. ①②④ C. ①③④ D. ②③④

【答案】B

【解析】

①利用同角的余角相等,易得∠EAB=PAD,再结合已知条件利用SAS可证两三角形全等;②利用①中的全等,可得∠APD=AEB,结合三角形的外角的性质,易得∠BEP=90°,即可证;③过BBFAE,交AE的延长线于F,利用③中的∠BEP=90°,利用勾股定理可求BE,结合AEP是等腰直角三角形,可证BEF是等腰直角三角形,再利用勾股定理可求EF、BF;④连接BD,求出ABD的面积,然后减去BDP的面积即可.

:①∵∠EAB+BAP=90°,

PAD十∠BAP=90°,

∴∠EAB=PAD,

又∵AE=AP,AB=AD,

∵在APDAEB中,

APD≌△AEB(SAS);

故此选项成立;

②∵△APD=AEB,

∴∠APD=AEB,

∵∠AEB=AEP+BEP,

APD=AEP+PAE,

∴∠BEP=PAE= 90°,

EBED;

故此选项成立;

③过BBFAE ,AE的延长线于F,

AE=AP,EAP=90°,

∴∠AEP=APE=45°,

又∵③中EBED,BFAF,

又∵BE=,

BF=EF=,

∴点B到直线AE的距离为,

故此选项不正确,

④如图,连接BD,

RtAEP,

AE=AP=1,

EP=,

又∵PB=,

BE=,

∵△APD≌△AEB,

PD=BE=,

SABP+SADP=SABD-SBDP=S正方形ABCD×DP×BE=×(4+)-××,

故此选项不正确,

∴正确的有①②④,

B选项正确.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在中,分别以为边作等边三角形和等边三角形,连接交于点,则的度数为(

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列函数中,yx的反比例函数有(  )

(1)y=3x;(2)y=﹣;(3)y=;(4)﹣xy=3;(5);(6);(7)y=2x2;(8)

A. (2)(4) B. (2)(3)(5)(8) C. (2)(7)(8) D. (1)(3)(4)(6)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某网店销售某款童装,每件售价60元,每星期可卖300件,为了促销,该网店决定降价销售.市场调查反映:每降价1元,每星期可多卖30件.已知该款童装每件成本价40元,设该款童装每件售价x元,每星期的销售量为y件.

1)求yx之间的函数关系式;

2)当每件售价定为多少元时,每星期的销售利润最大,最大利润多少元?

3)若该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装多少件?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在如图所示的平面直角坐标系中,OA1B1是边长为2的等边三角形,作B2A2B1OA1B1关于点B1成中心对称,再作B2A3B3B2A2B1关于点B2成中心对称,如此作下去,则B2nA2n+1B2n+1(n是正整数)的顶点A2n+1的坐标是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在四边形 ABCD 中,E BC 边中点.

)已知:如图,若 AE 平分BADAED=90°,点 F AD 上一点,AF=AB.求证:(1ABEAFE;(2AD=AB+CD

)已知:如图,若 AE 平分BADDE 平分ADCAED=120°,点 FG 均为 AD上的点,AF=ABGD=CD.求证:(1GEF 为等边三角形;(2AD=AB+ BC+CD.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】求证:相似三角形对应边上的中线之比等于相似比.

要求:①根据给出的△ABC及线段A'B′,A′(A′=A),以线段A′B′为一边,在给出的图形上用尺规作出△A'B′C′,使得△A'B′C′∽△ABC,不写作法,保留作图痕迹;

②在已有的图形上画出一组对应中线,并据此写出已知、求证和证明过程.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知直线与反比例函数的图像交于点A,且点A的横坐标为1,点Bx轴正半轴上一点,且

1)求反比例函数的解析式;

2)求点B的坐标;

3)先在的内部求作点P,使点P的两边OAOB的距离相等,且PA=PB.(不写作法,保留作图痕迹,在图上标注清楚点P

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,,点是边上的点,平分平分,有下列结论:①,②的中点,③,④,其中正确的有______.(填序号)

查看答案和解析>>

同步练习册答案