【题目】如图,直线∥,直线和,分别交于点.A为上一点,B为上一点,P为上一动点。
(1)如果P在C、D之间运动,如图①(点P与点C、D不重合),请说明:
(2)如果P在CD两点的外侧运动,如图②、图③(点P与点C、D不重合),问∠APB,,有何关系,请直接写出结论。
图① 图② 图③
【答案】(1)证明见解析(2)或
【解析】
(1)当P点在C、D之间运动时,首先过点P作PE∥,由,可得PE∥,根据两直线平行,内错角相等,即可求得:;
(2)当点P在C、D两点的外侧运动时,由直线,根据两直线平行,同位角相等与三角形外角的性质,即可求得:或.
解:(1)证明:过点P作PE平行于,
因为 PE∥,
所以
因为 ,
所以PE∥,
所以
所以
(2)如图2,当点P在C、D两点的外侧运动,且在下方时,.
理由如下:∵,
∴∠PED=∠A,
∵∠PED=∠B+∠APB,
∴.
如图3,当点P在C、D两点的外侧运动,且在上方时,.
理由如下:∵,
∴∠PEC=∠B,
∵∠PEC=∠A+∠APB,
∴.
科目:初中数学 来源: 题型:
【题目】光明电器超市销售每台进价分别为190元、160元的A、B两种型号的电风扇,下表是近两周的销售情况:
销售时段 | 销售数量 | 销售收入 | |
A种型号 | B种型号 | ||
第一周 | 2台 | 6台 | 1840元 |
第二周 | 5台 | 7台 | 2840 元 |
(进价、售价均保持不变,利润=销售收入-进货成本)
(1)求A、B两种型号的电风扇的销售单价;
(2)若超市准备再采购这两种型号的电风扇共40台,这40台电风扇全部售出后,若利润不低于2660元,求A种型号的电风扇至少要采购多少台?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A、F在线段GE上,AB∥DE,BC∥GE,AC∥DF,AB=DE
(1)请说明:△ABC≌△DEF;
(2)连接BF、CF、CE,请你判断BF与CE之间的关系?并说明理由
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD是平行四边形.
(1)利用尺规作∠ABC的平分线BE,交AD于E(保留作图痕迹,不写作法);
(2)在(1)所作的图形中,求证:AB=AE.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM.设点N的坐标为(m,n).
(1)若建立平面直角坐标系,满足原点在线段BD上,点B(﹣1,0),A(0,1).且BM=t(0<t≤2),则点D的坐标为 ,点C的坐标为 ;请直接写出点N纵坐标n的取值范围是 ;
(2)若正方形的边长为2,求EC的长,以及AM+BM+CM的最小值.(提示:连结MN,,)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,△ABC的边AB在x轴上,∠ABC=90°,AB=BC,OA=1,OB=4,抛物线经过A、C两点.
(1)求抛物线的解析式及其顶点坐标;
(2)如图①,点P是抛物线上位于x轴下方的一点,点Q与点P关于抛物线的对称轴对称,过点P、Q分别向x轴作垂线,垂足为点D、E,记矩形DPQE的周长为d,求d的最大值,并求出使d最大值时点P的坐标;
(3)如图②,点M是抛物线上位于直线AC下方的一点,过点M作MF⊥AC于点F,连接MC,作MN∥BC交直线AC于点N,若MN将△MFC的面积分成2:3两部分,请确定M点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】计算:
(1)(﹣20)+(+3)﹣(﹣5)
(2)(﹣5)×6×÷(﹣2)
(3)﹣÷﹣×(﹣9)
(4)(﹣1)4+5÷(﹣)×(﹣6)
(5)(+﹣)×36
(6)﹣1﹣[1+(﹣12)÷6]×(﹣)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,BE平分∠ABC交AC于点E,过点E作ED∥BC交AB于点D.
(1)求证:AEBC=BDAC;
(2)如果S△ADE=3,S△BDE=2,DE=6,求BC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=kx+b的图象与反比例函数y=的图象交于点A(﹣3,m+8),B(n,﹣6)两点.
(1)求一次函数与反比例函数的解析式;
(2)求△AOB的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com