【题目】阅读并解答:
①方程x2﹣2x+1=0的根是,则有.
②方程2x2﹣x﹣2=0的根是=,=,则有,.
③方程3x2+4x﹣7=0的根是,,则有,.
(1)根据以上①②③请你猜想:如果关于x的一元二次方程ax2+bx+c=0(a≠0)有两个实数根为,那么与系数a、b、c有什么关系?请写出你的猜想并证明你的猜想;
(2)利用你的猜想结论,解决下面的问题:
已知关于x的方程x2+(2k+1)x+k2﹣2=0有实数根,且,求k的值
【答案】(1),,证明见解析;(2)1.
【解析】
(1)由①②③中两根之和与两根之积的结果可以看出,两根之和正好等于一次项系数与二次项系数之比的相反数,两根之积正好等于常数项与二次项系数之比.
(2)欲求k的值,先把代数式x12+x22变形为两根之积或两根之和的形式,然后与两根之和公式、两根之积公式联立组成方程组,解方程组即可求k值.
(1)猜想为:设ax2+bx+c=0(a≠0)的两根为x1、x2,则有,.
理由:设x1、x2是一元二次方程ax2+bx+c=0(a≠0)的两根,
那么由求根公式可知,,.
于是有,,
综上得,设ax2+bx+c=0(a≠0)的两根为x1、x2,
则有,.
(2)x1、x2是方程x2+(2k+1)x+k2﹣2=0的两个实数根
∴x1+x2=﹣(2k+1),x1x2=k2﹣2,
又∵x12+x22=x12+x22+2x1x2﹣2x1x2=(x1+x2)2﹣2x1x2
∴[﹣(2k+1)]2﹣2×(k2﹣2)=11
整理得k2+2k﹣3=0,
解得k=1或﹣3,
又∵△=[﹣(2k+1)]2﹣4(k2﹣2 )≥0,解得k≥﹣,
∴k=1.
科目:初中数学 来源: 题型:
【题目】已知关于x的方程x2﹣(2m﹣1)x+m2+1=0有两个不相等实数根x1,x2
(1)求实数m的取值范围;
(2)若x12+x22=x1x2+3时,求实数m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=kx+b的图象与反比例函数的图象相交于A(m,4)、B(2,﹣6)两点,过A作AC⊥x轴交于点C,连接OA.
(1)分别求出一次函数与反比例函数的表达式;
(2)若直线AB上有一点M,连接MC,且满足S△AMC=3S△AOC,求点M的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某超市在春节期间开展优惠活动,凡购物者可以通过转动转盘的方式享受折扣和优惠,在每个转盘中指针指向每个区域的可能性均相同,若指针指向分界线,则重新转动转盘,区域对应的优惠方式如下,A1,A2,A3区域分别对应9折8折和7折优惠,B1,B2,B3,B4区域对应不优惠?本次活动共有两种方式.
方式一:转动转盘甲,指针指向折扣区域时,所购物品享受对应的折扣优惠,指针指向其他区域无优惠;
方式二:同时转动转盘甲和转盘乙,若两个转盘的指针均指向折扣区域时,所购物品享受折上折的优惠,其他情况无优惠.
(1)若顾客选择方式一,则享受优惠的概率为 ;
(2)若顾客选择方式二,请用树状图或列表法列出所有可能顾客享受折上折优惠的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A(3,0),B(﹣1,0)两点,与y轴相交于点C(0,﹣3)
(1)求该二次函数的解析式;
(2)设E是y轴右侧抛物线上异于点A的一个动点,过点E作x轴的平行线交抛物线于另一点F,过点F作FG垂直于x轴于点G,再过点E作EH垂直于x轴于点H,得到矩形EFGH,则在点E的运动过程中,当矩形EFGH为正方形时,求出该正方形的边长;
(3)设P点是x轴下方的抛物线上的一个动点,连接PA、PC,求△PAC面积的取值范围,若△PAC面积为整数时,这样的△PAC有几个?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,已知点在线段上,在和中,,,
,且为的中点.
(1)连接并延长交于,求证:;
(2)直接写出线段与的关系: ;
(3)若将绕点逆时针旋转,使点在线段的延长线上(如图②所示位置),则(2)中的结论是否仍成立?若成立,请证明;若不成立,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,二次函数的图像与x轴交于A、B两点,与y轴交于点C,其顶点为P,连接PA、AC、CP,过点C作y轴的垂线l.已知顶点P的坐标为(-3,-4),线段PC之长为3
(1)求二次函数解析式。
(2)M为直线l上一点,且以M,C,O为顶点的三角形与以A,C,O为顶点的三角形相似,请直接写出点M的坐标。
(3)直线l上是否存在点D,使△PBD的面积等于△PAC的面积的3倍?若存在,求出点D的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△PAB中,M.N是AB上两点,△PMN是等边三角形,∠APM=∠B.
(1)求证:∠A=∠BPN;
(2)求证:MN2=AM·BN;
(3)若AP=,AM=1,求线段MN,PB的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com