精英家教网 > 初中数学 > 题目详情

【题目】已知二次函数y=ax2﹣2ax+c(a<0)的最大值为4,且抛物线过点( ,﹣ ),点P(t,0)是x轴上的动点,抛物线与y轴交点为C,顶点为D.
(1)求该二次函数的解析式,及顶点D的坐标;
(2)求|PC﹣PD|的最大值及对应的点P的坐标;
(3)设Q(0,2t)是y轴上的动点,若线段PQ与函数y=a|x|2﹣2a|x|+c的图象只有一个公共点,求t的取值.

【答案】
(1)

解:∵y=ax2﹣2ax+c的对称轴为:x=﹣ =1,

∴抛物线过(1,4)和( ,﹣ )两点,

代入解析式得:

解得:a=﹣1,c=3,

∴二次函数的解析式为:y=﹣x2+2x+3,

∴顶点D的坐标为(1,4);


(2)

解:∵C、D两点的坐标为(0,3)、(1,4);

由三角形两边之差小于第三边可知:

|PC﹣PD|≤|CD|,

∴P、C、D三点共线时|PC﹣PD|取得最大值,此时最大值为,

|CD|=

由于CD所在的直线解析式为y=x+3,

将P(t,0)代入得t=﹣3,

∴此时对应的点P为(﹣3,0)


(3)

解:y=a|x|2﹣2a|x|+c的解析式可化为:

y=

设线段PQ所在的直线解析式为y=kx+b,将P(t,0),Q(0,2t)代入得:

线段PQ所在的直线解析式:y=﹣2x+2t,

∴①当线段PQ过点(0,3),即点Q与点C重合时,线段PQ与函数

y= 有一个公共点,此时t=

当线段PQ过点(3,0),即点P与点(3,0)重合时,t=3,此时线段PQ与

y= 有两个公共点,所以当 ≤t<3时,

线段PQ与y= 有一个公共点,

②将y=﹣2x+2t代入y=﹣x2+2x+3(x≥0)得:

﹣x2+2x+3=﹣2x+2t,

﹣x2+4x+3﹣2t=0,

令△=16﹣4(﹣1)(3﹣2t)=0,

t= >0,

所以当t= 时,线段PQ与y= 也有一个公共点,

③当线段PQ过点(﹣3,0),即点P与点(﹣3,0)重合时,线段PQ只与

y=﹣x2﹣2x+3(x<0)有一个公共点,此时t=﹣3,

所以当t≤﹣3时,线段PQ与y= 也有一个公共点,

综上所述,t的取值是 ≤t<3或t= 或t≤﹣3.


【解析】(1)先利用对称轴公式x=﹣ 计算对称轴,即顶点坐标为(1,4),再将两点代入列二元一次方程组求出解析式;
    (2)根据三角形的三边关系:可知P、C、D三点共线时|PC﹣PD|取得最大值,求出直线CD与x轴的交点坐标,就是此时点P的坐标;
    (3)先把函数中的绝对值化去,可知y= ,此函数是两个二次函数的一部分,分三种情况进行计算:①当线段PQ过点(0,3),即点Q与点C重合时,两图象有一个公共点,当线段PQ过点(3,0),即点P与点(3,0)重合时,两函数有两个公共点,写出t的取值;②线段PQ与当函数y=a|x|2﹣2a|x|+c(x≥0)时有一个公共点时,求t的值;③当线段PQ过点(﹣3,0),即点P与点(﹣3,0)重合时,线段PQ与当函数y=a|x|2﹣2a|x|+c(x<0)时也有一个公共点,则当t≤﹣3时,都满足条件;综合以上结论,得出t的取值.本题考查了二次函数的综合应用,先利用待定系数法求解析式,同时把最大值与三角形的三边关系联系在一起;同时对于二次函数利用动点求取值问题,从特殊点入手,把函数分成几部分考虑,按自变量从大到小的顺序或从小到大的顺序求解.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1,点O为直线AB上一点,过点O作射线OC,使BOC=120°,将一个含30°的直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(图中OMN=30°,∠NOM=90°)

(1)将图1中的三角板绕点O逆时针旋转至图2,使OMBOC的内部,且恰好平分BOC,问直线ON是否平分AOC?请说明理由;

(2)将图1中的三角板绕点O按每秒的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角AOC,求t

(3)将图1中的三角板绕点O顺时针旋转至图3,使ONAOC的内部,请探究:AOMNOC之间的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图, 在东西方向的海岸线MN上有A,B两港口,海上有一座小岛P,渔民每天都乘轮船从A,B 两港口沿AP,BP的路线去小岛捕鱼作业.已知小岛PA港的北偏东60°方向,在B港的北偏西45°方向,小岛P距海岸线MN的距离为30海里.

(1)AP,BP的长(参考数据:≈1.4,≈1.7,≈2.2);

(2)甲、乙两船分别从A,B两港口同时出发去小岛P捕鱼作业,甲船比乙船晚到小岛24分钟.已知甲船速度是乙船速度的1.2倍,利用(1)中的结果求甲、乙两船的速度各是多少海里/时?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图矩形OABC的边OA,OC分别与坐标轴重合并且点B的坐标为.将该矩形沿OB折叠使得点A落在点E,OEBC的交点为D.

(1)求证△OBD为等腰三角形

(2)求点E的坐标

(3)坐标平面内是否存在一点F,使得以点B,E,F,O为顶点的四边形是平行四边形若存在请直接写出点F的坐标若不存在请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,长方形OABC的边OA在数轴上,O为原点,长方形OABC的面积为12OC边长为3.

(1)数轴上点A表示的数为________

(2)将长方形OABC沿数轴水平移动,移动后的长方形记为O′A′B′C′,移动后的长方形O′A′B′C′与原长方形OABC重叠部分(如图2中阴影部分)的面积记为S.

①当S恰好等于原长方形OABC面积的一半时,数轴上点A′表示的数是多少?

  ②设点A的移动距离AA′x.

  ()S4时,求x的值;

  )D为线段AA′的中点,点E在线段OO′上,且OEOO′,当点DE所表示的数互为相反数时,求x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】发现与探索.

(1)根据小明的解答(图1)将下列各式因式分解

a2-12a+20

a-1)2-8(a-1)+7

a2-6ab+5b2

(2)根据小丽的思考(图2)解决下列问题.

①说明:代数式a2-12a+20的最小值为-16.

②请仿照小丽的思考解释代数式-(a+1)2+8的最大值为8,并求代数式-a2+12a-8的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD,将沿BE折叠,使点A恰好落在对角线BDF处,则DE的长是  

A. 3 B. C. 5 D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某天早晨,张强从家跑步去体育锻炼,同时妈妈从体育场晨练结束回家,途中两人相遇,张强跑到体育场后发现要下雨,立即按原路返回,遇到妈妈后两人一起回到家(张强和妈妈始终在同一条笔直的公路上行走).如图是两人离家的距离y(米)与张强出发的时间x(分)之间的函数图象,根据图象信息解答下列问题:

(1)求张强返回时的速度;

(2)妈妈比按原速返回提前多少分钟到家?

(3)请直接写出张强与妈妈何时相距1000米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】AB两点在数轴上如图所示,其中O为原点,点A对应的有理数为a,点B对应的有理数为b,且点A距离原点6个单位长度,ab满足b-|a|=2.

(1)a=______;b=______;

(2)动点P从点A出发,以每秒2个单位长度的速度向右运动,设运动时间为t秒(t>0)

①当PO=2PB时,求点P的运动时间t

②当PB=6时,求t的值:

(3)当点P运动到线段OB上时,分别取APOB的中点EF,则的值是否为一个定值?如果是,求出定值,如果不是,说明理由.

查看答案和解析>>

同步练习册答案