精英家教网 > 初中数学 > 题目详情

【题目】如图, 在东西方向的海岸线MN上有A,B两港口,海上有一座小岛P,渔民每天都乘轮船从A,B 两港口沿AP,BP的路线去小岛捕鱼作业.已知小岛PA港的北偏东60°方向,在B港的北偏西45°方向,小岛P距海岸线MN的距离为30海里.

(1)AP,BP的长(参考数据:≈1.4,≈1.7,≈2.2);

(2)甲、乙两船分别从A,B两港口同时出发去小岛P捕鱼作业,甲船比乙船晚到小岛24分钟.已知甲船速度是乙船速度的1.2倍,利用(1)中的结果求甲、乙两船的速度各是多少海里/时?

【答案】(1)AP=60海里,BP=42(海里);(2)甲船的速度是24海里/时,乙船的速度是20海里/

【解析】

1)过点PPEAB于点E,则有PE=30海里,由题意,可知∠PAB=30°,PBA=45°,从而可得 AP=60海里,在RtPEB中,利用勾股定理即可求得BP的长;

(2)设乙船的速度是x海里/时,则甲船的速度是1.2x海里/时,根据甲船比乙船晚到小岛24分钟列出分式方程,求解后进行检验即可得.

(1)如图,过点PPEMN,垂足为E,

由题意,得∠PAB=90°-60°=30°,PBA=90°-45°=45°,

PE=30海里,∴AP=60海里,

PEMN,PBA=45°,∴∠PBE=BPE= 45°,

PE=EB=30海里,

RtPEB中,BP==30≈42海里,

AP=60海里,BP=42(海里);

(2)设乙船的速度是x海里/时,则甲船的速度是1.2x海里/时,

根据题意,得

解得x=20,

经检验,x=20是原方程的解,

甲船的速度为1.2x=1.2×20=24(海里/).,

答:甲船的速度是24海里/时,乙船的速度是20海里/.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,正方形纸片ABCD中,对角线AC、BD交于点O,折叠正方形纸片ABCD,使AD落在BD上,点A恰好与BD上的点F重合,展开后折痕DE分别交AB、AC于点E、G,连结GF,给出下列结论:①∠ADG=22.5°;②tan∠AED=2;③SAGD=SOGD;④四边形AEFG是菱形;⑤BE=2OG;⑥若SOGF=1,则正方形ABCD的面积是6+4 ,其中正确的结论个数为(  )
A.2
B.3
C.4
D.5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下表为某个雨季水库管理员记录的水库一周内的水位变化情况,警戒水位为150m(上周末的水位刚好达到警戒水位).

星期

增减/m

+1.2

+0.4

+0.8

﹣0.1

+0.7

﹣0.7

﹣1.1

注:正数表示比前一天水位上升,负数表示比前一天水位下降.

(1)本周哪一天水位最高?有多少米?

(2)本周哪一天水位最低?有多少米?

(3)根据给出的数据,以警戒水位为0点,用折线统计图表示本周内该水库的水位情况.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解方程

(1)3x-2=1-2(x+1)

(2)

(3)2x+3(2x﹣1)=16-(x+1)

(4)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校为了做好大课间活动,计划用400元购买10件体育用品,备选体育用品及单价如下表(单位:元)

备选体育用品

篮球

排球

羽毛球拍

单价(元)

50

40

25

(1)400元全部用来购买篮球和羽毛球拍共10件,问篮球和羽毛球拍各购买多少件?

(2)400元全部用来购买篮球、排球和羽毛球拍三种共10件,能实现吗?(若能实现直接写出一种答案即可,若不能请说明理由.)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】操作探究:已知在纸面上有一数轴(如图所示).

操作一

(1)折叠纸面,使1表示的点与-1表示的点重合,则-3表示的点与________表示的点重合;

操作二:

(2)折叠纸面,使-1表示的点与3表示的点重合,回答以下问题:

5表示的点与数________表示的点重合;

②若数轴上AB两点之间距离为11(AB的左侧),且AB两点经折叠后重合,求AB两点表示的数是多少.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图△ABC ∠BAC=90°,AB=AC,DBC上一动点连接AD,过点AAEAD,并且始终保持AE=AD,连接CE.

(1)求证△ABD △ACE

(2)若AF平分∠DAEBCF,探究线段BD,DF,FC之间的数量关系并证明

(3)在(2)的条件下BD=3,CF=4,AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2﹣2ax+c(a<0)的最大值为4,且抛物线过点( ,﹣ ),点P(t,0)是x轴上的动点,抛物线与y轴交点为C,顶点为D.
(1)求该二次函数的解析式,及顶点D的坐标;
(2)求|PC﹣PD|的最大值及对应的点P的坐标;
(3)设Q(0,2t)是y轴上的动点,若线段PQ与函数y=a|x|2﹣2a|x|+c的图象只有一个公共点,求t的取值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某学校计划购买一批课外读物,为了了解学生对课外读物的需求情况,学校进行了一次“我最喜爱的课外读物”的调查,设置了“文学”、“科普”、“艺术”和“其他”四个类别,规定每人必须并且只能选择其中一类,现从全体学生的调查表中随机抽取了部分学生的调查表进行统计,并把统计结果绘制了如图所示的两幅不完整的统计图,则在扇形统计图中,艺术类读物所在扇形的圆心角是度.

查看答案和解析>>

同步练习册答案