【题目】下面是某同学对多项式(x2﹣4x+2)(x2﹣4x+6)+4进行因式分解的过程.
解:设x2﹣4x=y
原式=(y+2)(y+6)+4(第一步)
=y2+8y+16(第二步)
=(y+4)2(第三步)
=(x2﹣4x+4)2(第四步)
回答下列问题:
(1)该同学因式分解的结果是否彻底 _________ .(填“彻底”或“不彻底”)
若不彻底,请直接写出因式分解的最后结果 _________ .
(2)请你模仿以上方法尝试对多项式(x2﹣2x)(x2﹣2x+2)+1进行因式分解.
科目:初中数学 来源: 题型:
【题目】如图①,点是等边内一点,,.以为边作等边三角形,连接.
(1)求证:;
(2)当时(如图②),试判断的形状,并说明理由;
(3)求当是多少度时,是等腰三角形?(写出过程)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下列材料
利用完全平方公式,将多项式x2+bx+c变形为(x+m)2+n的形式,然后由(x+m)2≥0就可求出多项式x2+bx+c的最小值.
例题:求x2-12x+37的最小值.
解:x2-12x+37=x2-2x·6+62-62+37=(x-6)2+1,
因为不论x取何值,(x-6)2总是非负数,即(x-6)2≥0,
所以(x-6)2+1≥1.
所以当x=6时,x2-12x+37有最小值,最小值是1.
根据上述材料,解答下列问题:
(1)填空:x2-8x+_________=(x-_______)2,
(2)将x2+10x-2变形为(x+m)2+n的形式,并求出x2+10x-2的最小值,
(3)如图①所示的长方形边长分别是2a+5、3a+2,面积为S1:如图②所示的长方形边长分别是5a、a+5,面积为S2. 试比较S1与S2的大小,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了加强公民的节水意识,合理利用水资源,某市采用价格调控手段达到节水的目的.该市自来水收费价格见价目表.
若某户居民1月份用水8m3,则应收水费:元
2×6+4×(8-6)=20
(1)若该户居民2月份用水12.5m3,则应收水费 元;
(2)若该户居民3、4月份共用水20m3(4月份用水量超过3月份),共交水费64元,则该户居民3,4月份各用水多少立方米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】校园超市以4元/件的价格购进某物品,为制定该物品合理的销售价格,对该物品进行试销调查.发现每天调整不同的销售价,其销售总金额为定值,其中某天该物品的售价为6元/件时,销售量为50件.
(1)设该物品的售价为x元/件时,销售量为y件,请写出y与x的函数表达式(不用写出x的取值范围);
(2)若超市考虑学生的消费实际,计划将该物品每天的销售利润定为60元,则该物品的售价应定为多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了丰富课外活动,某校将购买一些乒乓球拍和乒乓球,某商场销售一种乒乓球拍和乒乓球,乒乓球拍每副定价80元,乒乓球每盒定价20元,“国庆节”期间商场决定开展促销活动,活动期间向客户提供两种优惠方案.
方案一:买一副乒乓球拍送一盒乒乓球;
方案二:乒乓球拍和乒乓球都按定价的90%付款.
某校要到该商场购买乒乓球拍20副,乒乓球盒(>20且为整数).
(1)若按方案一购买,需付款 元(用含的整式表示,要化简); 若按方案二购买,需付款 元(用含的整式表示,要化简).
(2)若30,通过计算说明此时按哪种方案购买较为合算?
(3)当30时,你能给出一种更为省钱的购买方案吗?试写出你的购买方法.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点C是线段AB上一点,M是线段AC的中点,N是线段BC的中点.
(1)如果AB=10cm,AM=3cm,求CN的长;
(2)如果MN=6cm,求AB的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平行四边形ABCD的对角线AC、BD相较于点O,EF过点O,且与AD、BC分别相交于E、F,若AB=4,BC=5,OE=1.5,则四边形EFCD的周长是( )
A.16B.14C.12D.10
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com