【题目】已知二次函数y=x2-4x+3.
(1)在网格中,画出该函数的图象.
(2)(1)中图象与轴的交点记为A,B,若该图象上存在一点C,且△ABC的面积为3,求点C的坐标.
【答案】(1)见解析;(2)C(0,3)或(4,3).
【解析】试题分析:(1)首先利用配方法求得y=x2-4x+3的顶点坐标,然后求得此二次函数与x轴与y轴的交点坐标,则可画出图象;
(2)由(1)可知AB=2,再根据面积可得AB边上的高为3,然后把y=3代入解析式,解方程即可得.
试题解析:(1)y=x2-4x+3=(x-2)2-1,顶点坐标为(2,-1),与x轴交于点(1,0)、(3,0),与y 轴交于点(0,3),图象如图所示:
(2)令y=0,代入,则x=1,3,
∴A(0,1),B(0,3),∴AB=2,
∵△ABC的面积为3,∴AB为底的高为3,
令y=3,代入,则x=0,4,
∴C(0,3)或(4,3).
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,,点P为AC边上一点,将线段AP绕点A顺时针方向旋转,当AP旋转至时,点恰好在同一直线上,此时于点E.
(1)求证:
(2)若,求AE的长
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】三张形状、大小相同但画面不同的风景图片,都按同样的方式剪成相同的三段,然后将上、中、下三段分别混合洗匀,从三堆图片中随机各抽出一张, 求这三张图片恰好组成一张完整风景图片的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为( )
A.6B.8C.10D.12
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】综合实践课上,某小组同学将直角三角形纸片放到横线纸上(所有横线都平行,且相邻两条平行线的距离为1),使直角三角形纸片的顶点恰巧在横线上,发现这样能求出三角形的边长.
(1)如图1,已知等腰直角三角形纸片△ABC,∠ACB=90°,AC=BC,同学们通过构造直角三角形的办法求出三角形三边的长,则AB=__________;
(2)如图2,已知直角三角形纸片△DEF,∠DEF=90°,EF=2DE,求出DF的长;
(3)在(2)的条件下,若橫格纸上过点E的横线与DF相交于点G,直接写出EG的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,已知正方形ABCD和正方形AEFG有公共顶点A,连接BE,DG.
(1)问:BE与DG有什么关系?说明理由.
(2)如图2,已知AB=4,AE=,当点F在边AD上时,求BE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,AD∥BC,∠ABC=90°,E是AB上一点,且DE⊥CE.若AD=1,BC=2,CD=3,则CE与DE的数量关系正确的是( )
A.CE=DE B.CE=DE C.CE=3DE D.CE=2DE
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】△ABC在平面直角坐标系中的位置如图所示,其中每个小正方形的边长为1个单位长度.
(1)将△ABC向右移平2个单位长度,作出平移后的△A1B1C1,并写出△A1B1C1各顶点的坐标;
(2)若将△ABC绕点(-1,0)顺时针旋转180°后得到△A2B2C2,并写出△A2B2C2各顶点的坐标;
(3)求出三角形ABC的面积
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com