【题目】如图1,已知正方形ABCD和正方形AEFG有公共顶点A,连接BE,DG.
(1)问:BE与DG有什么关系?说明理由.
(2)如图2,已知AB=4,AE=,当点F在边AD上时,求BE的长.
【答案】(1)BE=DG且BE⊥DG;理由见解析;(2)BE=.
【解析】
(1)设BE和DG相交于点O,AD和BE相交于点H,根据正方形的性质,可得AD=AB,AG=AE,∠DAB=∠EAG=90,利用SAS证明△EAB≌△GAD,得出BE=DG,∠GDA=∠EBA,推出∠DOH=∠HAB=90,即可求得.
(2)过点E作EM,已知四边形AEFG是正方形,四边形ABCD是正方形,∠EAF=∠FAG=45,∠DAB=90,可得∠EAM=45,已知AE,即可求得AM,BM,利用勾股定理即可求出BE.
(1)设BE和DG相交于点O,AD和BE相交于点H
∵四边形ABCD是正方形
∴AD=AB,∠DAB=90
∵四边形AEFG是正方形
∴AG=AE,∠EAG=90
∴∠EAB=∠EAD+∠DAB=∠EAD+∠EAG=∠GAD
∴
∴△EAB≌△GAD
∴BE=DG,∠GDA=∠EBA
∵∠DHO=∠BHA
∴∠DOH=∠HAB==90
∴BE⊥DG
故答案为:BE=DG且BE⊥DG
(2)过点E作EM
∵四边形AEFG是正方形
∴∠EAF=∠FAG=45
∵∵四边形ABCD是正方形
∴∠DAB=90
∴∠EAM=45
∴AM=EM
∵
∴
∴AM=1
∴MB=AB-AM=4-1=3
∴
故答案为:
科目:初中数学 来源: 题型:
【题目】在直角坐标平面内,直线y=x+2分别与x轴、y轴交于点A、C.抛物线y=﹣+bx+c经过点A与点C,且与x轴的另一个交点为点B.点D在该抛物线上,且位于直线AC的上方.
(1)求上述抛物线的表达式;
(2)联结BC、BD,且BD交AC于点E,如果△ABE的面积与△ABC的面积之比为4:5,求∠DBA的余切值;
(3)过点D作DF⊥AC,垂足为点F,联结CD.若△CFD与△AOC相似,求点D的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知△ABC中, , ,△CDE中, ,CD=DE=5,
连接接BE,取BE中点F,连接AF、DF.
(1)如图1,若三点共线, 为中点.
①直接指出与的关系______________;
②直接指出的长度______________;
(2)将图(1)中的△CDE绕点逆时针旋转(如图2, ),试确定与的关系,并说明理由;
(3)在(2)中,若,请直接指出点所经历的路径长.
图1 图2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=x2-4x+3.
(1)在网格中,画出该函数的图象.
(2)(1)中图象与轴的交点记为A,B,若该图象上存在一点C,且△ABC的面积为3,求点C的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点O(0,0),点B(0,1)是第一个正方形OBB1C的两个顶点,以它的对角线OB1为一边作第二个正方形OB1B2C1,以正方形OB1B2C1的对角线OB2为一边作第三个正方形OB2B3C2,再以正方形OB2B3C2的对角线OB3为一边作第四个正方形OB3B4C3…以此规律作下去,点B2014的坐标为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】完全平方公式:(a±b)2=a2±2ab+b2适当的变形,可以解决很多的数学问题.
例如:若a+b=3,ab=1,求a2+b2的值.
解:因为a+b=3,ab=1
所以(a+b)2=9,2ab=2
所以a2+b2+2ab=9,2ab=2
得a2+b2=7
根据上面的解题思路与方法,解决下列问题:
(1)若(7﹣x)(x﹣4)=1,求(7﹣x)2+(x﹣4)2的值;
(2)如图,点C是线段AB上的一点,以AC、BC为边向两边作正方形,设AB=5,两正方形的面积和S1+S2=17,求图中阴影部分面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知y﹣3与2x﹣1成正比例,且当x=1时,y=6.
(1)求y与x之间的函数解析式.
(2)当x=2时,求y的值.
(3)若点A(x1,y1),B(x2,y2)都在该函数的图象上,且y1>y2,试判断x1,x2的大小关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校九年级有24个班,共1 000名学生,他们参加了一次数学测试.学校统计了所有学生的成绩,得到下列统计图.
(1)求该校九年级学生本次数学测试成绩的平均数;
(2)下列关于本次数学测试说法正确的是( )
A.九年级学生成绩的众数与平均数相等
B.九年级学生成绩的中位数与平均数相等
C.随机抽取一个班,该班学生成绩的平均数等于九年级学生成绩的平均数
D.随机抽取300名学生,可以用他们成绩的平均数估计九年级学生成绩的平均数
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】现代互联网技术的广泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部分物品,经了解有甲、乙两家快递公司比较合适.甲公司表示:快递物品不超过 1 千克的,按每千克 22 元收费;超过 1 千克,超过的部分按每千克 15元收费.乙公司表示:按每千克 16 元收费,另加包装费 3 元.设小明快递物品x 千克.
(1)请分别写出甲、乙两家快递公司快递该物品的费用 y(元)与 x(千克)之间的函数关系式;
(2)当 为何值时小明选择乙快递公司更省钱?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com